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ABSTRACT

Each winter, ice forms on rivers, streams, and navigable waterways, causing many problems through
its effects on the operation of hydraulic control structures, locks and dams, hydropower plants, and water
intakes. Ice covers increase river stages by presenting an additional rough boundary, which increases the
channel wetted perimeter, reduces the channel hydraulic radius, and typically increases overall effective
channel roughness. The increase in stage can result in flooding, especially during severe ice conditions or
in low-lying areas. This situation is particularly critical downstream of hydroelectric power plants be-
cause the risk of ice-induced flooding may require operators of such plants to curtail power production
and provide more expensive replacement power. This study presents a state–space model for forecasting
ice conditions and the resulting stages in rivers. The model incorporates a hydraulic component, a thermal
and ice transport component, and an ice-cover progression component. The Kalman filter procedure is
used to update the model with observed stages and observed positions of the upstream leading edge of the
ice cover. The model thereby arrives at an efficient and optimal estimate of the river ice and hydraulic
conditions. The state–space model can also recursively estimate the effective channel roughness using
the augmented Kalman filter procedure to account for changes in the channel roughness produced by the
river ice cover and other effects. By way of an example the state–space model is applied to the Missouri
River downstream of Oahe Dam, located in Pierre, South Dakota, USA. Outflow from the dam, which is
used for peaking power production, can vary between 0 and 55,000 cfs in a matter of minutes to meet the
demands of the electric power grid it supplies. The system noise covariance of the model was adjusted to
produce the optimal results based on least-squares criteria. Forecasts of the downstream stages and river
ice conditions are presented. Accuracies of the forecasts obtained with the model are assessed using ice
and flow observations from a series of past winters in which ice conditions were severe. The updated
model results show substantial improvements in the forecasts compared to a non-updated model.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.
DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN TO THE ORIGINATOR.
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A State–Space Model for River Ice Forecasting 

STEVEN F. DALY 

1 INTRODUCTION 

1.1 Background 

Each winter, ice forms on rivers, streams, and navigable waterways in north-
ern regions, causing many problems through its effects on the operation of 
hydraulic control structures, locks and dams, hydropower plants, and water 
intakes. Ice formation delays navigation and has the potential for causing sudden 
and catastrophic flooding. Reliable river ice forecasts would be a great asset in 
dealing with these problems. Forecasts would provide time to schedule proce-
dures to mitigate the adverse effects on the operations of diverse river structures, 
such as hydraulic control structures, locks and dams, and hydropower plants. 
With adequate warning, the procedures could be implemented in an orderly and 
effective manner. Additionally, if needed, emergency measures such as 
evacuation or flood fighting could be instituted in a timely manner. 

A river reach where ice forecasting could play an important role, and the one 
that usefully illustrates the need for this study, is the reach immediately down-
stream of Oahe Dam on the Missouri River (Fig. 1). The hydroelectric plant at 
Oahe Dam operates as a peaking plant. Its outflow can be varied between 0 and 
55,000 cfs in a matter of minutes to match the demands of the electric power 
grid. Typically it produces 700 MW at its normal maximum discharge of 55,000 
cfs. Oahe Dam, therefore, is a valuable power production asset in the midwestern 
region of the U.S.  

Ninety miles downstream of Oahe Dam, the Big Bend Dam reservoir creates 
Lake Sharpe, which extends upstream to within 20 miles of Oahe Dam. Each 
winter, ice forms on Lake Sharpe. During especially cold periods, the leading 
edge of the stationary ice cover can progress upstream in the Missouri River until 
it reaches the cities of Pierre and Fort Pierre, South Dakota, situated immediately 
downstream of Oahe Dam. The presence of river ice locally decreases the 
hydraulic conveyance of the Missouri River and causes the stage in the river to  
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Figure 1. Missouri River downstream of Oahe Dam at Pierre, SD. Shown are the locations 
of river stage measurement gages and channel cross sections, which are identified by 
river mile. 

rise. If the river ice cover has advanced sufficiently, the increased stages create 
flooding at Pierre and Fort Pierre. The Reservoir Control Center (RCC) of the 
Corps of Engineers at Omaha, Nebraska, reduces Oahe releases as stages 
approach alert levels at any of the four gages downstream of Oahe Dam (Fig. 1). 
The gages are closely monitored by the Oahe Dam operators and by the RCC 
staff when weather conditions are conducive to rapid ice formation. The 
corresponding limits on power generation are immediately coordinated with 
Western Area Power Administration (WAPA). City officials have alerted project 
and RCC staff in the past when storm sewers have flooded street intersections in 
southeast Pierre. However, when the outflow is abruptly reduced, a major 
component of the power production capacity of the entire Midwest is disrupted 
unexpectedly. The power distribution agencies must scramble to replace the lost 
hydropower, often at expensive rates. 

Reliable forecasts of the river stages downstream of Oahe Dam, and at 
similar dams, would be a great advantage in regulating flow levels. Forecasts 
would provide dam operators time to schedule reductions in flow so that flooding 
was eliminated entirely. This advance time would also give the power distribu-
tors time to seek alternate and economical sources of electric power to replace 
the capacity of a facility such as Oahe Dam. 
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Figure 2. Large ice floes in the Missouri River moving past LaFramboise 
Island. 

However, forecasting stages in ice-covered rivers is not a simple proposition, 
because complex interacting processes of heat transfer, ice production, ice trans-
port, river flow, and ice cover formation mechanics need to be accounted for. The 
complexity of these processes is further enhanced by the highly unsteady flow 
releases from the Oahe Dam, the daily cycling of the air temperature, changes in 
the release water temperature, and the movement of the leading edge of the ice 
cover itself (Fig. 2). In fact it will be seen that simulation of the ice cover extent 
is difficult, and the accuracy of the results leaves much to be desired. It is this 
difficulty in simulation that motivates the search for a means of improving fore-
casts by using the additional tools provided by the Kalman filter. 

1.2 Objectives  

The central objective of this report is to assess the usefulness of Kalman fil-
tering for improving forecasts of water surface elevations when river ice is 
forming. The following tasks were undertaken to attain this objective: 

• A state–space river ice model was developed, with the Missouri River 
downstream of Oahe Dam being used as a case study application. The 
state–space model uses the Kalman filter to update the model using 
available observations. 
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• The Kalman filter parameters were estimated through numerical experi-
ments.  

• The accuracy of the forecasts using the Kalman filter was assessed. 
Practical problems in its application and possible solutions are discussed. 
The use of a state–space model offers a potentially useful way to obtain 
reliable forecasts of river ice conditions and their effects on river stages. 
Accurate stage forecasts during winter are needed to avert ice-induced 
flooding of flow-regulated rivers and maintain maximum hydropower 
production. 

• The problem of missing and/or inaccurate data from field instrumenta-
tion to support the use of the Kalman filter approach was discussed and 
solution procedures outlined. 

1.3 Outline of the model 

In this study a numerical model with several components is used to simulate 
the rapidly changing stage, discharges, and ice conditions that occur in the Mis-
souri River. The components are a hydraulic model, which estimates the water 
surface elevations and flows in the river system; a thermal and ice transport 
model, which estimates the river water temperatures, the frazil ice and surface ice 
concentrations, and the surface ice thickness; and an ice progression model, 
which estimates the extent and thickness of any stationary ice covers. 

The hydraulics model can be thought of as the base of the ensemble; it oper-
ates as a stand-alone model or as part of the ensemble. It is a one-dimensional, 
unsteady flow model. The water surface elevations and flows determined by the 
hydraulics model are used as input in the thermal and transport model. 

The ice transport model is a “free drift model.” This term means that ice is 
carried by the river flow as a passive tracer. For low to moderately high concen-
trations of surface ice, and at all physically realizable concentrations of frazil ice, 
this is a good assumption. In addition, while it is recognized that there are a 
number of the fluid properties (such as density) and coefficients (such as the 
hydraulic roughness of the bed) used in the hydraulics model that are theoreti-
cally temperature dependent, these properties and coefficients can safely be 
assumed to be constant over the winter period and their temperature dependence 
ignored. As a result, there is no feedback from the thermal and ice transport 
model to the hydraulic model.  

The final component model is an ice cover progression model. This model 
determines the length and thickness of any stationary ice covers in the river sys-
tem. It requires input from the hydraulics model and the thermal and ice transport 
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model. In turn, the output of the ice progression model is required as input into 
the hydraulics model and the thermal and ice transport model. There is strong 
feedback between the ice cover progression model and the others.  

Numerical river ice models, such as the one described above, have become 
valuable tools for investigating many aspects of river ice, but they have not 
become a standard means for forecasting river ice conditions, largely for reasons 
of accuracy and reliability. The accuracy of a numerical river ice model, as with 
all numerical models of physical systems, reflects the accuracy of the model 
input, the empirical coefficients (or parameters), and the model structure. The 
model input includes the description of the channel geometry, the time-varying 
boundary conditions that drive the model, and the initial conditions from which 
the model starts. The model structure is composed of the numerical discretization 
of the underlying mathematical equations that describe the physical processes, 
and the mathematical equations themselves. In theory, if the input data, the 
model parameters, and the model structure were highly accurate, the model out-
put should also be highly accurate. In practice, there are always inaccuracies in 
the model input, the model parameters, the numerical discretization, and the 
viability of the differential equations. In a numerical river ice model used for 
forecasting, these inaccuracies compound because the models are used in a con-
tinuous manner throughout the winter season to “track” the river ice conditions, 
as will be seen. Consequently errors, such as discrepancies between the calcu-
lated and observed locations of the leading edge of the ice cover, accumulate 
with time. In addition, the reliability (estimates of model error) of the river ice 
forecasts produced by deterministic numerical models have not been adequately 
determined. It is difficult to make practical use of a forecast if there is no under-
standing of the accuracy of that forecast. Indeed, an estimate of the forecast 
reliability may be as important as the forecast itself. Given these issues of 
accuracy and reliability, it is understandable that numerical models for river ice 
forecasting are, at best, considered experimental. 

Given the above discussion, it must be pointed out that there is usually an 
alternate source of information available on the conditions in the Missouri River 
and other flow-regulated rivers: direct field observations of the river stages and 
the location of the leading edge of the ice cover. Stages are typically measured 
once an hour by automatic gages that transmit the data via geostationary satellites 
every four hours. The number of recording gages on the Missouri River between 
Oahe Dam and Big Bend Dam, for instance, has increased over the years, and 
there are currently six. Observations of the leading edge of the ice cover are 
made from the shore or small planes. The scheduling of the ice observations 
depends on the constraints of weather, road conditions, and manpower availabil-
ity. Typically the observations are made only when the leading edge of the ice 
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cover approaches Pierre and are made once, or at most twice, a day. Often there 
are a number of days with no observations. It is interesting to note that there has 
never been a measurement of the ice thickness in the Missouri River near Pierre 
because of the rapidly changing and dangerous ice conditions in the river.  

In conventional hydraulic modeling practice, these direct field observations 
would be used only to calibrate the simulation model. During calibration, a set of 
empirical coefficients required by the model (for example, the Manning’s flow-
resistance coefficient) are adjusted manually or by other means until the model is 
able to reproduce the observed measurements to within some specified tolerance. 
Calibration is a time-consuming task that is typically done once. After calibration 
is complete, the direct field observations can serve as criteria to judge the model 
performance. Large discrepancies, if (or when) they occur, alert the user that 
some part of the simulation model, such as the input data, the empirical coeffi-
cients, or the underlying model structure, as discussed above, is in error. Often 
the response is to recalibrate the model. However, operational time demands and 
manpower limitations usually preclude the ability of an operator to recalibrate in 
any meaningful way once the model is in use.  

Given the direct field observations that are available, and the difficulties in 
reaching an accurate numerical model as described above, it is attractive to con-
template forgoing the numerical model altogether and developing a modeling 
procedure based solely on the statistics of the observations themselves. Of 
course, given the rapidly changing ice conditions on the Missouri River down-
stream of Oahe, it would be difficult to use the direct field observations to esti-
mate the river stages between the gages, and it would be impossible to predict the 
stages at any future time, when obviously no observations are available. It is 
clear that a deterministic numerical model, as described previously, would be 
required to estimate the stages in the rivers between the gages and to predict the 
stages at a future time. What is desired is an approach that would combine the 
best features of the empirical and deterministic approaches to river stage model-
ing. Kalman (1960) and Kalman and Bucy (1961) developed such an approach, 
referred to as the Kalman filter. The Kalman filter is an optimal estimator that is 
defined as “a computational algorithm that processes measurements to deduce a 
minimum error (in accordance with some stated criterion of optimality) estimate 
of the state of a system by utilizing: knowledge of system and measurement 
dynamics, assumed statistics of system noises and measurement errors and initial 
condition information” (Gelb 1992). The Kalman filter provides a means of 
“updating” the model results with new observations as they are received.  

To show how the Kalman filter would be used, it is beneficial to describe the 
steps of the forecasting procedure. Initially the deterministic river ice model is 
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recast in state–space form, which treats the state variables as random variables 
described by probability distributions. There are examples of state–space models 
described in the literature similar to that discussed here. Such models have found 
extensive use in a wide range of related problems, including hydrology (e.g., 
Kitanidis and Bras 1980, Georgakakos and Krajewski 1985, Mizumura and Chiu 
1985, Assaf and Quick 1991, Lee and Singh 1999) and hydraulics (Chiu and Isu 
1978, Budgell 1981, Hsieh 1987, Bravo et al. 1993, Crissman et al. 1993, Fread 
and Jin 1993). The first step of the forecast is to track the river hydraulic and ice 
conditions by propagating the state–space river ice model in time, using the 
observations that serve as the model boundary conditions. The boundary condi-
tions are discussed in more detail in the following chapters, but they consist of an 
upstream hydraulic boundary condition—the time-varying flow release of Oahe 
Dam; a downstream hydraulic boundary condition—the time-varying stage at 
Big Bend Dam; an upstream thermal boundary condition—the release water 
temperature; and the observed air temperature. At periodic intervals, using the 
Kalman filter procedure, observations of the stages and leading edge of the ice 
cover are used to update the state–space river ice model. This procedure provides 
an optimal estimate of the state–space variables, not only at the gages but also at 
locations between the gages, and even of variables that are not observed, such as 
the effective channel roughness, a model parameter.  

At this point in the procedure, step one can be repeated, and a cycle of model 
propagation and updating repeated for the entire winter season. This describes a 
process of data assimilation that arrives at an optimal estimate of the state vari-
ables over the entire winter season. This type of analysis could provide valuable 
information for a study of the stage frequencies along the river reach, for exam-
ple. This also describes a process of recursive parameter estimation by making 
repeated adjustment of the effective channel roughness. The advantage of recur-
sive parameter estimation over a one-time calibration is obvious. A forecast is 
made by propagating the state–space river ice model into the future, using pre-
dictions of the future boundary conditions. Typically the forecast is made imme-
diately after the state–space river ice model is updated. This assures that the ini-
tial conditions at the start of the forecast are an optimal estimate of the actual 
conditions in the river at the time that the forecast is made. After the forecast, 
step one is repeated and a cycle of model propagation, updating, and forecasting 
is repeated throughout the winter season.  

In summary, this report brings together three areas of study: river ice engi-
neering, numerical modeling of unsteady flow and convection dominated disper-
sion, and optimal estimation using the Kalman filter. The ice-related problems of 
flow regulation of Oahe Dam provide a useful case study to jointly apply these 
areas of study. 
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A large body of literature covering many aspects of these areas is available 
and, taken altogether, is much more than a single work such as this can compre-
hensively describe. However, there are certain works that the interested reader 
will find indispensable. In the area of ice engineering, Ashton (1986) provides an 
in-depth overview of the entire field. Beltaos (1995) provides a good description 
of granular ice jam theory and many other aspects of river ice as well. The many 
works of Shen (see for example, Shen et al. 1995, Wang et al. 1995, Shen 1996), 
taken together, provide comprehensive and consistent descriptions of numerical 
river ice simulations. In the area of numerical modeling of river flow, Cunge et 
al. (1980) is a good introduction with a number of practical examples. Fischer et 
al. (1979) describes dispersion in channels and covers theory and modeling. In 
applying the Kalman filter, the works by Gelb (1992) and Grewal and Andrews 
(1993) are excellent basic texts, and the compilation by Sorenson (1985) contains 
many practical applications as well as theory. Descriptions of practical applica-
tions with relevance to hydraulics and river flow problems can be found in the 
conference proceedings edited by Chiu (1978). 

1.4 Synopsis of state–space river ice model development 

Chapter 2 describes the development of the deterministic river ice model and 
its numerical solution. Each component of the river ice model is based on equa-
tions that describe the mechanics of physical process that the component simu-
lates. The equations are solved numerically be schematizing the river system in a 
consistent manner in both space and time. Each component is one dimensional 
and uses appropriate averages of all variables at each channel cross section. The 
models also solve for the variables at one time step based on the values of those 
variables at the time step immediately preceding the solution time and the 
imposed boundary conditions. As a result only the values of variables at two con-
secutive time steps, tn+1 and tn, are required at any one time. This situation can be 
represented as 

( )n+1 n n 1 n n, , , , 0f a b t t U+ =
K

 (1) 

where n 1+a  = column vector of variables of interest at time n+1 
 nb  = column vector of the variables at time n 
 nKU  = column vector containing the appropriate boundary conditions. 

 
Both nb  and nKU  are known; n 1+a  is the vector of unknown values that is found 
by solving the system of algebraic equations represented by f. In general the 
series of equations represented by f will be nonlinear and will require an iterative 
solution procedure.  
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Chapter 3 recasts the numerical model into a state–space model in which the 
model variables are replaced by state variables. In addition, f is augmented by 
additional equations that propagate the values of additional state variables repre-
senting model parameters. These additional equations propagate the values of the 
coefficients in time with no change. This is not surprising, as the value of model 
parameters cannot, by definition, be determined by the model. Only through the 
update process can the value of these coefficients change. To develop the state–
space model, the series of equations represented by f are recast in a suitable form. 
It is shown that, to first order, the equations represented by f can be written as 

n 1 n n n n n+ = Φ + Λ + +X X U N w  (2) 

where n 1+X  = column vector of the state variables at time n+1 
 nX  = column vector of the state variables at time n 
 Φn = state transition matrix 
 Λn = input coupling matrix 
 N = matrix containing elements unaffected by the expectation operator 
 w = zero mean additive model error term, which is uncorrelated (or 

“white”) in time. 
 

This form is entirely suitable for use with state–space models and the Kalman 
filter. Once the equations have been recast in this form, the development of the 
state–space model follows directly based on the Kalman filter procedure. 

In Chapter 4 the deterministic river ice model is applied to the case of the 
Missouri River downstream of Oahe Dam at Pierre, South Dakota, and the results 
are reviewed. Next, the parameters required by the Kalman filter procedure are 
estimated based on numerical experiments. The state–space model is then used to 
hindcast the stages and ice covers in the Missouri River over three winter periods 
using the estimated statistical parameters. Procedures for dealing with missing 
and bad data are developed and applied. Finally, the state–space model is applied 
to forecast stages and ice cover extents for the Missouri River downstream of 
Oahe Dam. The accuracy of the forecast is assessed based on the actual condi-
tions recorded in the river during two winters in which ice played an important 
role.  

Finally, Chapter 5 presents the principal conclusions of this study, along with 
suggestions for further study. 
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2 RIVER ICE MODEL 

2.1 Introduction 

This chapter describes the development of the river ice model, which has 
three components: a hydraulic component, for estimating the water surface ele-
vations and flows in the river system; a thermal and ice transport component, for 
estimating the river water temperatures, the frazil ice and surface ice concentra-
tions, and the surface ice thickness; and an ice progression component, for esti-
mating the extent and thickness of any stationary ice covers. The physical proc-
esses, the governing equations, and the numerical solution of each component are 
also discussed in this chapter.  

The hydraulic component is a one-dimensional, unsteady flow model that 
closely follows the development provided by Barkau (Corps of Engineers 1997). 
It uses the actual river geometry provided by the user in a form compatible with 
the program HEC-2 (Corps of Engineers 1990). The thermal and ice model fol-
lows closely the development of Lal and Shen (1993). Water temperature, frazil 
ice concentration, and surface ice concentration are each calculated simultane-
ously, along with the deposited frazil ice and stationary ice thickness at each time 
step. The advected properties are all estimated using a one-dimensional Holly–
Preissman scheme (Holly 1984, Sauvaget 1984). The ice progression model 
determines the length and thickness of any stationary ice covers in the river sys-
tem. This algorithm follows closely that proposed by Lal and Shen (1993).  

The forms that ice can take in rivers range widely. No attempt was made in 
this study to produce a comprehensive ice model that could simulate the river ice 
conditions in all channels and all flow conditions. Rather, the emphasis is on the 
type of ice conditions that can form in large rivers with relatively mild gradients, 
such as prevail for the Missouri River downstream of Oahe Dam. The present 
combination of a one-dimensional unsteady flow model, a thermal and ice trans-
port model, and an ice cover progression model has been shown to be able to 
simulate winter ice conditions on large rivers such as the Ohio (Shen et al. 1991) 
and the St. Lawrence (Lal and Shen 1993). The following sections of this chapter 
describe the various components of the river ice model. 

2.2 Hydraulic model component 

2.2.1 Background 

This chapter describes the development of a hydraulic model for estimating 
the flow stages and discharges for a channel whose ice cover changes dynami-
cally. The basic continuity and momentum equations describing one-dimensional, 
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unsteady flow in channels with a floodplain are presented for both open-water 
and ice-covered flow. The four-point, finite-difference forms of the equations are 
derived following the development given by Barkau (Corps of Engineers 1997). 
As is usual, the channel geometric properties are described at only a finite 
number of discrete cross sections (Cunge et al. 1980) that segments the river into 
a series of subreaches. The continuity and momentum equations are solved for 
each subreach. This approach solves for the change in discharge (∆Q) and the 
change in stage (∆Z), from time n to n + 1, at each cross section. If there are j 
number of cross sections, this approach results in 2j unknowns and 2(j – 1) 
equations. Two additional boundary condition equations are required so that the 
number of equations equals the number of unknowns and a unique solution 
exists. The final result is a quasi-linear set of equations that can be solved using 
the Newton–Raphson iterative approach. 

A pre-processor program (Corps of Engineers 1997) analyzes each cross 
section and prepares a “look-up” table of the geometric properties of each cross 
section as a function of the water surface elevation. The geometry of each cross 
section can be unique. The look-up table approach provides an efficient means of 
estimating the geometric values required for each continuity and momentum 
equation. As is shown in this chapter, the presence of a floating, stationary ice 
cover modifies the effective channel geometry by reducing the channel flow area, 
increasing the channel wetted perimeter, and modifying the effective hydraulic 
roughness of the channel. The combined result of these changes is largely to 
reduce the conveyance of the channel compared to the open-water conveyance at 
an equivalent water depth. To account for the presence of ice, the look-up table 
results must be modified heuristically for each time step at sections where an ice 
cover exists.  

An additional problem is presented by the fact that the ice cover extent along 
the channel may be continuously increasing or decreasing with time. A conflict 
arises with the description of the river channel using discrete cross sections that 
cause abrupt changes in the results each time the ice cover extent passes through 
a cross section. To overcome this conflict, a means of interpolating the channel 
properties between the ice-covered and open-water geometries was developed to 
smooth the changes as the ice cover advances or retreats past a cross section. 
This interpolation requires two new variables per cross section: Σusj, which 
describes the ice cover extent immediately upstream of cross section number j, 
and Σdsj, which describes the ice cover extent immediately downstream of j. The 
rate of ice cover progression is calculated using the straightforward approach 
originally presented by Lal and Shen (1993). In this method the rate of ice cover 
progression is proportional to the ice volume arriving at the leading edge of the 
ice cover and inversely proportional to the thickness of the advancing ice edge. 
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The method of estimating the ice volume arriving at the leading edge is described 
in the next chapter. The rate of ice cover retreat is a more problematic quantity to 
determine. In essence, melting of the ice cover reduces the thickness until a 
minimum allowable thickness is reached. At that point the ice cover is considered 
no longer stable and is removed by the simulation. 

In Chapter 3 the state–space form of the hydraulic model is formed by lin-
earizing the finite-difference system of equations around the state vector. In this 
chapter it is demonstrated that the solution of the finite-difference representation 
of the governing equations is found by linearizing the finite-difference equations 
around a solution estimate and iteratively solving the linearized equations using 
the Newton–Raphson method. The parallel between these two requirements can 
be exploited to minimize the number of numerical computations, as shown in the 
next chapter.  

2.2.2 Governing equations 

The basic equations governing flow in channels are the continuity and 
momentum equations. They are presented first without making any distinction 
between ice-covered and open-water conditions.  

2.2.2.1 Continuity. In the present approach, separate equations are written for 
the main channel and the floodplain. The continuity equation for the channel is  

c c
f

c

A Q
q

t x
∂ ∂

+ =
∂ ∂

. (3) 

The continuity equation for the floodplain is 

f f
c l

f

A Q
q q

t x
∂ ∂

+ = +
∂ ∂

 (4) 

where t = time 
 x = longitudinal distance 
 A = flow area 
 Q = discharge 
 qf = lateral inflow from the floodplain to the channel 
 qc = lateral inflow from the channel into the floodplain 
 ql = lateral inflow into the floodplain. 
The subscript c refers to the channel while the subscript f refers to the floodplain. 

2.2.2.2 Momentum. The momentum equation for the channel is  
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c c c
c fc f

c c

Q V Q ZgA S M
t x x

∂ ∂ ∂
∂ ∂ ∂

 
+ + + = 

 
. (5) 

The corresponding equation for flow in the floodplain is  

f f f
f ff c

c f

Q V Q ZgA S M
t x x

 ∂ ∂ ∂
+ + + = ∂ ∂ ∂ 

 (6) 

where g = gravity 
 V = flow velocity 
 Z = water surface elevation 
 Sf = energy gradient 
 Mf = momentum transfer into the channel from the floodplain 
 Mc = momentum transferred from the floodplain from the channel. 

 
At any section, Sf can be estimated as 

2

f 2

QS
K

=  (7) 

where K is the conveyance of the channel. Based on Manning’s equation the 
conveyance is  

2 31K AR
n

=  (8) 

where n is Manning’s flow-resistance coefficient and R is the hydraulic radius. 

2.2.3 Effects of an ice cover 

The presence of a stationary, floating ice cover changes the effective geome-
try of the channel. Accordingly, changes occur to the flow area, the hydraulic 
radius, and the effective hydraulic roughness of the channel. These changes can 
have a significant effect on the channel conveyance, K, and as a result the friction 
slope, Sf.  

Let the subscript o stand for open-water, and i ice-covered, conditions. Then 
the flow area under an ice cover, Ai, is 

i o
'A A Bρ

= − η
ρ

 (9) 
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where η = mean ice thickness 
 B = channel width 
 ρ' = ice density 
 ρ = water density. 

 

The hydraulic radius, Ri, in a channel with an ice cover can be estimated as 

i
i

o

A
R

Wp B
=

+
 (10) 

where Wpo is the open-water wetted perimeter of the channel. Notice that the 
hydraulic radius for ice-covered channels is significantly less than that for open-
water channels (Ro = Ao/Wpo), depending on the relative width-to-depth ratio of 
the channel. As most large channels are usually much wider than they are deep 
and are roughly rectangular in shape, the hydraulic radius of open-water channels 
is approximately equal to the mean depth of the channel. The hydraulic radius of 
ice-covered channels, however, is usually about half of the open-water hydraulic 
radius, or half the mean depth of the channel. The hydraulic roughness of the 
channel can be estimated using the composite Manning’s roughness coefficient, 
nc. It can be estimated approximately as 

2
3 3 3

2 2
b i

c 2
n n

n
 + =
 
 

 (11) 

where nb is the Manning’s roughness coefficient for the bed and ni is the corre-
sponding value of the Manning’s roughness coefficient for the ice cover. The 
channel conveyance for ice-covered channels is then 

2 3

i i i
c

1K A R
n

= . (12) 

Finally, the energy gradient, Sf, can be estimated as 

2

f 2
i

QS
K

= . (13) 

2.2.4 Finite-difference scheme 

The continuity and momentum equations are solved using the four-point, 
implicit finite-difference scheme. There are many methods available for numeri-
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cally solving finite-difference equations. The method used here has been widely 
adopted for solving channel flow problems because it is robust and accurate and 
has well-described numerical properties. In this scheme the channel geometry is 
described at a finite number of cross sections. In theory the cross sections can be 
an arbitrary distance apart, with the maximum separation distance consistent with 
numerical accuracy and an accurate description of the channel. Solutions are 
advanced from one time step to the next based on the values at the initial time 
step at each cross section and the imposed boundary conditions. Solutions for the 
flow equations are found only at the intersections of the channel cross sections 
and time lines, which together can be visualized to form a grid in time and space. 
A separate continuity and momentum equation is written for each subreach. (A 
subreach is defined by the river length bounded by an upstream and downstream 
cross section. If there are j cross sections, there are j – 1 subreaches.) All the 
equations are solved simultaneously, which allows information from the entire 
river to influence the solution at any single point. 

2.2.4.1 Four-point difference representation. The discretization scheme is 
based on representing the values of the dependent variables and functions of the 
variables between the computational grid points in terms of the values at the grid 
points. Note that subscripts denote the x-location along the river while super-
scripts denote time level. A derivative of any function F with respect to time is 
now 

n 1 n n 1 n
i 1 i 1 i i

0.5 0.5F F F F F
t t t

+ +
+ +

∂    = − + −   ∂ ∆ ∆
. (14) 

A derivative with respect to distance can be represented in finite-difference 
form as 

( )n 1 n 1 n n
i 1 i i 1 i

1F F F F F
x x x

+ +
+ +

− θ∂ θ    = − + −   ∂ ∆ ∆
 (15) 

where θ is a weighting factor. The value of θ has a significant impact on the 
numerical properties of the solution scheme (Fread 1974.) In general, if θ > 0. 5, 
the solution is unconditionally stable. The value of any function can be repre-
sented as 

( )n 1 n 1 n n
i 1 i i 1 i

1
2 2

F F F F F+ +
+ +

− θθ    = + + +    . (16) 
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For any variable F, 

n 1 n
i i iF F F+∆ = − . (17) 

The above three equations can be restated in this form as 

[ ]i 1 i
1

2
F F F
t t

∂
∂ += ∆ + ∆

∆
 (18) 

n n
i 1 i i 1 i

1F F F F F
x x x+ +

∂ θ   = − + ∆ − ∆   ∂ ∆ ∆
 (19) 

n n
i 1 i i 1 i

1
2 2

F F F F F+ +
θ   = + + ∆ + ∆    . (20) 

2.2.4.2 Finite-difference form of the governing equations. The finite-
difference form of the continuity equation can now be written for the channel and 
the floodplain by rewriting eq 5 and 6 in the form of eq 18, 19, and 20: 

( ) ( ) ( )n n
c i 1 c i c i 1 c i ci 1 ci l

e e

1 1 0
2

Q Q Q Q A A q
x x t+ + +

θ
− + ∆ − ∆ + ∆ + ∆ − =

∆ ∆ ∆
 (21) 

( ) ( ) ( )n n
f i 1 f i f i 1 f i fi 1 fi c l

e e

1 1 0
2

Q Q Q Q A A q q
x x t+ + +

θ
− + ∆ − ∆ + ∆ + ∆ − − =

∆ ∆ ∆
. (22) 

The momentum equation for the channel and floodplain can be written in a 
similar fashion: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n n
ci 1 ci ci 1 ci

c

n n
ci 1 ci ci 1 cici 1 ci

c

n nci 1 ci
ci 1 ci fci 1 fci fci 1 fci

c c

f

1 1
2

1
2 2

1
2 2

Q Q VQ VQ
t x

VQ VQ g A A A A
x

Z Z
Z Z S S S S

x x

M

θ θ

θ θ

+ +

+ ++

+
+ + +

  ∆ + ∆ − − +   ∆ ∆

  ∆ − ∆ + + + ∆ + ∆  ∆  

 −
+ ∆ − ∆ + + + ∆ + ∆ ∆ ∆ 

=

 (23) 
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n n
fi 1 fi fi 1 fi

f

n n
fi 1 fi fi 1 fif 1 fi

f

n nci 1 ci
fi 1 fi ffi 1 ffi ffi 1 ffi

f f

c

1 1
2

1
2 2

1
2 2

i

Q Q VQ VQ
t x

VQ VQ g A A A A
x

Z Z
Z Z S S S S

x x

M

θ θ

θ θ

+ +

+ ++

+
+ + +

  ∆ + ∆ − − +   ∆ ∆

  ∆ − ∆ + + + ∆ + ∆  ∆  

 −
+ ∆ − ∆ + + + ∆ + ∆ ∆ ∆ 

=

 (24) 

At this point the continuity equations for the channel and the floodplain need 
to be summed into one equation, as do the momentum equations for the channel 
and floodplain. These can be done by first determining an effective length, –xe, 
for any subreach i, as 

( ) ( )ci ci 1 ci fi fi 1 fiii
ei

fi fi 1 ci ci 1

A A x A A x
x

A A A A
+ +

+ +

+ ∆ + + ∆
∆ =

+ + +
 (25) 

and the equivalent channel energy slope as 

fc c c ff f f
f

e

S A x S A x
S

A x
∆ + ∆

=
∆

. (26) 

Next the flow weighting factor, φ, is defined, for any cross section i, as  

ci
i

ci fi

Q
Q Q

φ =
+

. (27) 

If it is assumed that the flow distribution is given by the ratio of the conveyances, 
then 

ci
i

ci fi

K
K K

φ =
+

. (28) 

A velocity distribution factor, βi, for any cross section i, can be defined as 
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( ) ( )c c f f ii
i

i i

V Q V Q
V Q

+
β = . (29) 

Finally, it is assumed that the ∆ function of the following variables can be 
expanded as 

( )
n

i i i

n 1 n

i i
i i Z Z Z

d d d1
d d d

A A AA Z Z
Z Z Z

+

= +θ∆

 
∆ = θ + − θ ∆ = ∆  

 
 (30) 

and 

n
i i i

fi fi
fi i i

i iZ Z Z

2 d 2
d

S K S
S Z Q

K Z Q
= +θ∆

−
∆ = ∆ + ∆ . (31) 

The evaluation of the derivative of A with respect to Z is described next.  

2.2.5 Representing geometric properties 

As mentioned earlier, a pre-processor program analyzes each river section 
and prepares a look-up table of the geometric properties of each section as a 
function of a finite number of discrete water surface elevations. The pre- 
processor program estimates the channel and river valley area, the channel and 
valley conveyance, and other variables at a preset number of equally spaced ele-
vations. These elevations must span the distance from the minimum to maximum 
expected water levels in the simulations. All the geometric properties are 
assumed to be piece-wise linear between the selected water surface elevations. In 
this section the linear interpolation are described for the open-water variables as 
well as the adjustments that are made to account for the presence of the ice cover. 

This method of estimating channel geometry properties can be used to reduce 
the computational requirements of the four-point finite-difference scheme. It can 
be seen by formalizing the geometric function at any section. Recall that any 
function can be estimated using the formula 

n n
i 1 i i 1 i

1
2 2

F F F F F+ +
θ   = + + ∆ + ∆     (32) 

which can be restated as  
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( ) ( )n n
i 1 i 1 i i

1
2

F F F F F+ +
 = + θ∆ + + θ∆  . (33) 

As F is a function of the water surface elevation, Z, at each section, it can be 
written as  

( )n n
i 1 i 1 i 1F F Z+ + +=  (34) 

because the form of function Fi+1 is constant with time but not with Z. ∆Fi+1 can 
be written as 

( ) ( )n 1 n
i 1 i 1 i 1 i 1 i 1F F Z F Z+
+ + + + +∆ = − . (35) 

Therefore, as F is piece-wise linear with respect to Z, to first-order accuracy, 

( )n n
i 1 i 1 i 1 i 1 i 1F F F Z Z+ + + + ++ θ∆ = + θ∆ . (36) 

Consequently the function F can be represented as 

( ) ( )n n
i 1 i 1 i 1 i i i

1
2

F F Z Z F Z Z+ + +
 = + θ∆ + + θ∆  . (37) 

This formulation reduces the number of times the geometric properties 
needed to be estimated from four to two. The finite-difference representation of 
the derivative with respect to x, eq 19, can also be written in this manner. 

2.2.5.1 Open-water geometric properties. Herein, Zo is the water surface ele-
vation of interest. Let Z1 be the elevation of the first point in the look-up table 
that is less than or equal to Zo and Z2 be the elevation of the first point in the 
look-up table that is greater than Zo. The open-water flow area at a water surface 
elevation of Zo,  A(Zo), and the conveyance at a water surface elevation of Zo,  
K(Zo), are estimated as shown in the following equations. For convenience the 
distinction between the channel and the floodplain is not made here. However, 
both the channel and floodplain values are found in a similar manner as below: 

( ) ( ) ( ) ( ) ( )2 1
o 1 o 1

2 1

A Z A Z
A Z A Z Z Z

Z Z
−

= + −
−

 (38) 
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( ) ( ) ( )2 1
o

2 1

d
d

A Z A ZA Z
Z Z Z

−
=

−
 (39) 

( ) ( ) ( ) ( ) ( )2 1
o 1 o 1

2 1

K Z K Z
K Z K Z Z Z

Z Z
−

= + −
−

 (40) 

( ) ( ) ( )2 1
o

2 1

d
d

K Z K ZK Z
Z Z Z

−
=

−
. (41) 

2.2.5.2 Ice cover influence on flow geometry. In sections where an ice cover 
exists, a new elevation, Zi, can be defined: 

i o
'Z Z ρ

= − η
ρ

. (42) 

This elevation is the bottom of the ice cover. The flow area variables affected by 
ice can then be estimated as 

( ) ( )ice o o iA Z A Z=  (43) 

and 

( ) ( )ice o o id d
d d

A Z A Z
Z Z

=  (44) 

where Ao is the open-water flow area. The ice-affected conveyance variables are 
found as  

( ) ( )
( ) ( )

5 3
o i

ice o 2 3
c i i

A Z
K Z

n Wp Z B Z
=

 + 
 (45) 

and 

( ) ( ) ( ) ( ) ( )ice o ice 2 ice 1
ice 1 i 1

2 1

d
d

K Z K Z K Z
K Z Z Z

Z Z Z
−

= + −
−

. (46) 
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2.2.5.3 Dynamic ice cover representation. The finite-difference scheme dis-
cussed above requires that the geometrical properties of each river cross section 
(except for the extreme upstream and downstream sections) be used twice in the 
computations: once for estimating the hydraulic properties of the downstream 
subreach, and once for estimating the hydraulic properties of the upstream 
subreach. The presence of an ice cover complicates these calculations because its 
length may vary with time on the upstream side of a section, the downstream 
side, or both. In open water the geometric properties of each cross section need 
only be determined once, then used for both the upstream and downstream 
subreach calculations. In the ice-covered case the geometric properties need only 
be determined once but may need to be modified separately for downstream or 
upstream subreach calculations. This is done as follows. 

Let iceix∆  be the distance that the ice cover extends upstream of cross section 
I. Then the following two variables associated with each cross section can be 
defined: 

icei
i

ci

x
us

x
∆

Σ =
∆

 if icei

ci
0 0.5

x
x

∆
≤ ≤

∆
 (47) 

and 

i 0.5usΣ =  if icei

ci
1 0.5

x
x

∆
≥ >

∆
. (48) 

The following relationship is found because cross-section numbering 
increases in the downstream direction: 

i 0dsΣ =  if icei 1

ci 1
0 0.5

x
x

+

+

∆
≤ ≤

∆
 (49) 

and 

icei 1
i

ci 1
0.5

x
ds

x
+

+

∆
Σ = −

∆
 if icei 1

ci 1
1 0.5

x
x

+

+

∆
≥ >

∆
. (50) 

Let Ri be any geometric variable at section i determined though the use of the 
look-up table. Then let iR  be the value of the variable weighted for the ice cover 
presence. The value of iR  for use in determining the hydraulic properties of the 
flow reach defined by sections i and i + 1 can be estimated as 
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( )i i oi i ii2 0.5R ds R ds R=  − Σ + Σ    (51) 

where oiR is the open-water value of iR , and iiR  is the ice-covered value. The 
value of iR  for use in determining the hydraulic properties of the flow reach 
defined by section i – 1 and i can be estimated as 

( )i i oi i ii2 0.5R us R us R=  − Σ + Σ   . (52) 

2.2.5.4 Time-varying channel conveyance. The effective channel conveyance 
at a section may vary with time because of changes in the cross-sectional area or 
through changes in the effective hydraulic roughness of the channel bed or the 
river ice cover. For example, sediment transport may both change the cross-
sectional area and alter the effective roughness of a section. In this study the con-
cern is with changes in the effective roughness of the ice cover with time (Ashton 
1986, Shen and Yapa 1986). The most direct approach would seem to be to allow 
the Manning’s roughness coefficient of the ice cover or the channel or both to 
vary with time. However, the use of geometric tables that include conveyance 
greatly complicate this direct approach. The use of geometric tables is implicitly 
based on the assumption that the cross-sectional properties are constant with 
time, an assumption that is not true if the ice cover roughness is varying with 
time. In this study a conveyance factor, Cv, is proposed that is applied to the 
effective channel conveyance as shown in the following equation: 

( )i v i oi i ii2 0.5K C us K us K = − Σ + Σ   (53) 

where Koi and Kii are the open-water and ice-cover channel conveyances, respec-
tively. Cv can also be regarded as the inverse of the hydraulic roughness factor 
that modifies the composite Manning’s roughness coefficient of a section. As the 
effective channel roughness decreases, for example through smoothing of the 
river ice cover, Cv increases. In the remaining portion of this chapter, Cv will be 
regarded as constant and equal to one. In the following chapter on the state–space 
model, Cv will be discussed in more detail. 

2.2.6 Summary of finite-difference representation 

At this point the combined continuity and momentum equations for the chan-
nel and floodplain can be found by summing the channel and the floodplain ver-
sion of each equation (the variables affected by the presence of the ice cover are 
indicated by the overbar): 



State–Space Model for River Ice Forecasting 23 

 

( ) ( )n n
i 1 i i 1 i

ei ei

ci 1 fi 1
ci i 1 fi i 1

ei

ci fi l
ci i f i

ei ei

1

d d1
2 d d

d d1 Z 0
2 d d

Q Q Q Q
x x

A A
x Z x Z

t x Z Z

A A Q
x Z x

t x Z Z x

+ +

+ +
+ +

θ
− + ∆ − ∆ +

∆ ∆

 
∆ ∆ + ∆ ∆ + ∆ ∆  

 
∆ ∆ + ∆ ∆ − = ∆ ∆ ∆ 

 (54) 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
1 12

1 1 11 12

1
1 1 1

10.5 1 1

10.5 1

Q Q xi i i i cit xei

Q Q xi i i i fit xei

n n n nVQ VQ V Q V Qi i i ii ix xei ei

Z Zn n i ig A A Z Zi i i ix xei ei

dA dAi ig ZidZ dZ

φ φ

φ φ

θβ β β β

θ

θ

 ∆ + ∆ ∆ + + + ∆ ∆

 − ∆ + − ∆ ∆ + + + ∆ ∆

   − + ∆ − ∆ ++ +   +   ∆ ∆

 −+ + + ∆ − ∆ ++ + ∆ ∆ 

+ ∆ + ∆+

( )

( )

1

0.5 0.51 1

2 21 11
1 1

1 1
0.5 1

2 2

10.5 1 1

Z Zci ciZi xei

n n n ng A A S Si i fi fi

S SdKfi fii Z Qi iK dZ Qi in ng A Ai i
S SdKfi fii Z Qi iK dZ Qi i

dAn n ig S S Zfi fi idZ

θ

   −+    +
   ∆  

 + + + + + 

 − + ++ ∆ + ∆+ + 
+ + 

+ + +  −
 + ∆ + ∆ 
  

  ++ ∆ + + + 
0

dAi ZidZ

 
 ∆ =
  

 

(55)
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The foregoing assumes that 0F F∆ ∆ ≈  and that φj, βj, ∆xej, and V are constant 
over a time step. 

A system of quasi-linear equations results: 

( )
( )
( )

( )
( )

( )

1 1

n n n n
1 1 2 2 1 1 2 2

n n n n
1 1 2 2 1 1 2 2

n n n n
2 2 3 3 2 2 3 3

n n n n
2 2 3 3 2 2 3 3

n n n n
j 1 j 1 j j j 1 j 1 j j

j 1 j 1 j j

,

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , ,

BC Q Z

C Q Z Q Z Q Z Q Z

M Q Z Q Z Q Z Q Z

C Q Z Q Z Q Z Q Z

M Q Z Q Z Q Z Q Z

C Q Z Q Z Q Z Q Z

M Q Z Q Z Q

− − − −

− −

∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

#

( )
( )

n n n n
j 1 j 1 j j

j j

0

, , ,

,

Z Q Z

BC Q Z

− −

 
 
 
 
 
 
 
 
  = 
 
 
 
 
 
 
 ∆ ∆  

 (56) 

where the BCs are the additional equations describing the conditions at the 
upstream and downstream boundaries of the river. The equations are quasi-linear 
because the coefficients of the unknowns (∆Q1, ∆Z1,…, ∆Qj, ∆Zj) depend in part 
on the value of the unknowns.  

It is convenient in further discussions to use a shorthand notation to refer to 
the above series of equations. This can be done by referring to the equations 
using the following functional form: 

( )n n 1, , , , 0f a b t t t U ++ ∆ =
K KK  (57) 

where Ka  and 
K
b  are column vectors defined as 

T
1 1 j j

Tn n n n n
1 1 j j

, , ... ,

, , ... ,

a Q H Q H

b Q H Q H

 = ∆ ∆ ∆ ∆ 

 =  

K

K . (58) 

Note that the relationship between aK  and b
K

 can be simply stated as 

n 1 na b b+= −
K KK . (59) 



State–Space Model for River Ice Forecasting 25 

 

The input data entered in the model include the hydraulic boundary conditions 
and the calculated ice cover extents. These variables are combined in the column 
vector n 1U +K : 

Tn 1 n 1 n 1 n 1 n 1
0 o 1 j, , ...U Q H ds us+ + + + + = Σ Σ 

K
. (60) 

2.2.7 Solution of the finite-difference equations 

It is assumed that all values are known except for those included in aK . The 
above equations are quasi-linear with respect to aK  as described above. As a result 
the unknowns in aK  cannot be solved for directly. The Newton–Raphson proce-
dure has been shown to be an effective procedure for iteratively estimating aK . 
This procedure can be described in the following manner. Let aK�  be an estimate 
of aK . Then the equations included in f above can be expanded in a Taylor’s series 
about aK� : 

( ) ( )n n 1 n

a a

0 , , , , ff a b t t t U a a
a

+

=

∂
= + ∆ + −

∂ K K�

K KK K K� �K  (61) 

or more simply, 

a a fδ = −F  (62) 

where 

( )
( )

n n 1

a

a a

, , , ,f f a b t t t U

a a

f
a

+

=

= + ∆

δ = −

∂
=

∂aF
K K�

K KK�

K K�

K

. (63) 

Fa is a 2I by 2I square, banded matrix; δ a  and f are vectors. δ a  is found by 
inverting Fa and multiplying both sides of the above equation. Consequently  

( )1
a f−δ = −aF . (64) 
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Once aδ  is found, a new estimate for aK�  is produced: 

new old aa a= + δK K� � . (65) 

This solution procedure is repeated until aδ  is smaller than some predetermined 
tolerance or a maximum number of iterations has taken place.  

2.3 Thermal and ice transport model component 

2.3.1 Background 

It has been shown that in large, well-mixed rivers the longitudinal (along the 
channel) distribution of temperature and passive tracers (materials that do not 
modify the flow field of the channel) can be well described using the one-
dimensional advection–diffusion equation (Fischer et al. 1979). In the present 
study the longitudinal temperature distribution of the channel is estimated along 
with two passive tracers: the concentration of suspended frazil ice and the area 
concentration of transported surface ice. Transported frazil ice and surface ice 
can be considered passive tracers because, under most circumstances, they do not 
influence river flow. Concentrations of frazil ice in rivers are quite low, usually 
several orders of magnitude less than 1% by volume (Daly 1994). Concentrations 
of surface ice may become large enough that some portion of the drag imparted 
on the floating ice by the flow is resisted by the riverbanks. In the case of the 
Missouri River downstream of Oahe Dam, there is apparently not enough travel 
time for the surface concentration of floating ice to become great enough for 
interaction with the banks to become important. In other locations this may not 
be the case. Therefore, the “free drift” approximation will be used in this study.  

It is clear from the physics of ice growth that the water temperature, frazil ice 
concentration, and surface ice concentration are mutually dependent. Conse-
quently the transport equation for each ice form must be solved simultaneously 
(Lal and Shen 1993). The transport equations must also handle either open-water 
or ice-covered conditions; a means for doing this is presented.  

A solution procedure is presented that solves the transport equations at each 
cross section in turn, starting from upstream and progressing downstream. The 
channel geometric properties are described at the same number of discrete cross 
sections as the hydraulic model.  

An important challenge that the solution procedure must handle is the abrupt 
transition from open-water to ice-covered conditions that occurs at the leading 
upstream edge of the ice cover. This transition represents a “shock” at which the 
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properties of the equations change abruptly. It would be difficult to integrate the 
governing equations through this transition in any accurate way. By interpolating 
a cross section at the leading edge of the ice cover, this transition can be dealt 
with and the accuracy of the solution maintained. The transport equations are 
successively solved for the open-water subreach upstream of the leading edge, 
then for the ice-covered subreach downstream of the leading edge. As with the 
overall solution procedure described for the hydraulic model, this solution proce-
dure anticipates the state–space model form. The parallel between the solution 
procedure described here and the requirements of the state–space form can be 
exploited to minimize the number of numerical computations, as are shown in the 
next chapter. 

2.3.2 Governing equations 

The one-dimensional transport of heat in a river can be written as (Shen 
1996) 

( ) ( ) ( )

( )

wa a a

p

wi mi i f

p p

1
1

D
D

T TU
t x

Bh T T CT
x x C A

Bh T TL C
C t C A

ψ

∂ ∂
+ =

∂ ∂

− − ∂ ∂
+ − Ω + ∂ ∂ ρ 

−ρ
+ Ω

ρ ρ

 (66) 

where T = cross-sectional water temperature 
 Ca = surface concentration of floating ice 
 Cf = concentration of suspended frazil ice 
 U = mean flow velocity 
 ψ = longitudinal heat diffusion coefficient 
 Cp = heat capacity of the water 
 B = width of the open-water surface 
 hwa = water-to-air heat transfer coefficient 
 hw = water-to-ice heat transfer coefficient 
 TA = air temperature 
 Ω  = ice cover index. 

 

If an ice cover is present, Ω  = 1; otherwise Ω  = 0. The terms on the right-hand 
side of the equation represent the diffusion due to the longitudinal temperature 
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gradient, the heat transfer exchange with the atmosphere, the latent heat transfer 
from melting or growing suspended frazil ice, and the heat transfer exchange 
with the ice cover, respectively. In this study the heat transport in the longitudinal 
direction is assumed to be dominated by convection; diffusion can be ignored and 
ψ set as 0. Heat transfer from the water surface is assumed to be a linear function 
of the difference between water temperature and air temperature, or if the 
channel is ice covered, it is assumed that the heat transfer is a linear function of 
the difference between water temperature and ice/water equilibrium temperature, 
Tm. In both cases the heat transfer coefficient must be defined.  

Surface ice is assumed to be transported in the form of ice floes that form 
from frazil slush, although how floes form from frazil ice is probably one of the 
least well described processes in the evolution of frazil ice (Daly 1994). Obser-
vations and recent work suggest that the floe size may be determined by the 
structure of the surface turbulence of the channel (Matousek 1984, Andreasson et 
al. 1998). A quantitative means of estimating the surface ice concentration that 
avoids estimating the floe diameter, but rather focuses on the surface concentra-
tion, was developed by Lal and Shen (1993). They describe the surface concen-
tration of ice in terms of a conservation equation: 

( ) ( )
( )

f b aa a a
a

i f f

1 D1
1 D

C V CC C CU BU C
t x h e h x B t

 Θ −∂ ∂ ∂
+ = − Ω − −  ∂ ∂ + − ∂ 

 (67) 

where Vb = rise velocity of the suspended frazil ice crystals 
 Ω = probability of the frazil crystals remaining at the underside of sur-

face pans after they have contacted them 
 hi = thickness of frazil pans 
 hf = thickness of frazil ice deposited under pans 
 ef = porosity of the deposited frazil. 

 

The terms on the right-hand side of the equation represent the increase in surface 
concentration due to the arrival of frazil ice at the water surface and its incorpo-
ration into pans, and the last two terms represent the changes in surface ice con-
centration due to changes in the flow velocity and channel width. To apply this 
formula it is required that a minimum allowable floe thickness be specified at the 
start of the simulation.  

To implement the foregoing equations, it is necessary to review what is 
known about the initial formation of frazil ice and how it can be simulated. Frazil 
ice initially appears in natural water bodies as distinct, separate ice crystals sus-
pended in turbulent flow. The initial crystals form through secondary nucleation, 



State–Space Model for River Ice Forecasting 29 

 

which starts when seed crystals are introduced into turbulent, supercooled water. 
While the details of secondary nucleation are not known, it is known that mil-
lions of frazil ice crystals can result from a few seed crystals (Daly 1984). There 
are two approaches to simulating the development of frazil ice in natural water 
bodies. The first, termed “frazil ice dynamics,” attempts to simulate the size dis-
tribution function of the frazil crystals (Daly 1984, Hammar and Shen 1995) 
based on estimations of the heat transfer rate from the suspended crystals, the 
secondary nucleation rate, and the seeding rate. In practice, while physically rig-
orous, this approach requires extensive computational effort, and there have been 
few data available for validation. The second approach simulates the concentra-
tion of frazil and assumes that the frazil particles can be described by a mean 
diameter, which remains constant with time. This approach has found success in 
modeling frazil ice in the oceans (described by Omstedt in Daly 1994) and is the 
approach adopted by Lal and Shen (1993): 

( ) ( )f b u wf f
o f m

i i f

1 1
C V B N kC C

U a N T T S
t x A L d

Θ∂ ∂
+ = − + − + − Ω

∂ ∂ ρ
 (68) 

where Nu = frazil crystal Nusselt number (a non-dimensional heat transfer 
coefficient) 

 kw = thermal conductivity of water 
 df = length scale associated with a frazil ice particle 
 ao = mean area of a frazil ice particle 
 Nf = number of frazil ice particles per unit volume 
 S = seeding rate of new particles. 

 

The seeding rate describes the number of frazil ice particles that are introduced 
through the water surface per unit time. The seed crystals are produced by the 
freezing of water droplets in the air. The droplets are produced through a variety 
of mechanisms (Daly 1994). The separate terms on the right-hand side of the 
equation represent the sink of crystals at the water surface as they are incorpo-
rated into ice floes, the growth or melting of the ice crystals through heat transfer 
with the water, and the entrance of new crystals through seeding. 

In addition to the three transport equations described above, two auxiliary 
equations are required in order to estimate the thickness of the floating ice floes 
through thermal growth and the thickness of the deposited frazil beneath the 
pans. The thermal growth is estimated by assuming that the heat transfer through 
the floe is quasi-steady: the floe surface is at the air temperature, the floe’s hori-
zontal interface with the water is at the ice/water equilibrium temperature, and 
the temperature gradient between is linear. In addition, accelerated ice growth is 
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possible if frazil ice deposits against the underside of the floe. The requisite 
equation is 

( )m ai

f i i i

ia i

D 1
D 1

T Th
t e L h

H k

−
=

ρ  
+ 

 

 (69) 

where Hia is the ice–air heat transfer coefficient and ki is the thermal conductivity 
of ice. The thickness of deposited frazil ice is estimated as 

( )
b vf i

f

D D
D 1 D

V Ch h
t e t

Θ
= −

−
 (70) 

where the terms on the right-hand side of the equation represent the thickness of 
frazil deposition minus the thickness lost due to thermal thickening of the ice floe 
into the deposited frazil ice. 

2.3.3 One-dimensional Holly–Preissman representation 

The thermal transport is solved by using the method of characteristics, which 
consists of replacing the partial differential equation with two ordinary differen-
tial equations: 

( ) ( ) ( ) ( )wa a a wi mi i f

p p p

1 Dd 1
d D

Bh T T C Bh T TL CT
t C A C t C A

− − −ρ
= − Ω + + Ω

ρ ρ ρ
 (71) 

( ) ( )
( )

f b aa a
a

i f f

1d D1
d 1 D

C V CC CU BC
t h e h x B t

 Θ − ∂
= − Ω − −  + − ∂ 

 (72) 

( ) ( )f b u wf
o f m

i i f

d 1 1
d

C V B N kC
a N T T S

t A L d
Θ

= − + − + − Ω
ρ

 (73) 

d
d
x U
t

= . (74) 
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The above equations are next translated into the finite-difference form pre-
sented earlier. The finite-difference form is written along the flow characteristic: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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ξ ξ
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 (75) 
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where  

u w
f o f

i i f

1 N k
Y a N

L d
=

ρ
. (80) 

Variables with the subscript ξ indicate values at the foot of the characteristic 
arriving at xi at time n + 1. In the present formulation the foot must be on the 
boundary of the space–time grid cell defined by xi and xi–1 and tn and tn+1. The 
general problem is to interpolate the values of the variables at ξ. Linear interpo-
lation has been shown to introduce substantial inaccuracies into the calculations. 
In the present formulation the “two-point higher order” scheme of Holly and 
Preissman is used (Sauvaget 1984). In this scheme the value of any variable can 
be interpolated at ξ through knowing the value of the variable and its derivative 
at the grid cells points xi and xi–1 at time tn and at xi–1 at time tn+1. The implicit 
assumption is that the flow is in the downstream direction only. In this case the 
transported properties at ξ are  

n n n n n 1 n 1
1 i 1 2 i 3 i 1 4 i 5 i 1 6 i 1T c T c T c TX c TX c T c TX+ +

ξ − − − −= + + + + +  (81) 

n n n n n 1 n 1
a 1 ai 1 2 ai 3 ai 1 4 ai 5 ai 1 6 ai 1C c C c C c CX c CX c C c CX+ +

ξ − − − −= + + + + +  (82) 

n n n n n 1 n 1
f 1 f i 1 2 f i 3 f i 1 4 f i 5 f i 1 6 f i 1C c C c C c CX c CX c C c CX+ +

ξ − − − −= + + + + +  (83) 

where TX, CXa, and CXf are the respective derivatives of temperature, surface ice 
concentration, and frazil ice concentration with respect to the longitudinal dis-
tance along the river. In this scheme it is necessary to also determine the value of 
the derivatives at time tn+1. They are  
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If the Courant Number, rC , defined as U t x∆ ∆ , is in the range r1 0C≥ ≥ , then 

i i

i i 1 i i 1

x U t
x x x x− −
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− −
 (87) 

and 
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 (88) 
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If r 1C > , then 
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It is assumed in the above formulation that reverse flow does not occur; that 
is, rC  cannot be less than 0. However, the equations could be modified to handle 
this case.  
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2.3.4 Solution of the governing equations  

At this point the five transport equations at each section have been developed 
along with their Holly–Preissman representation. As the flow model and the 
transport model are effectively decoupled, the hydraulic model can be solved 
independently. Therefore, the flow variables and the channel geometric variables 
are known at each section at the time of solution of the transport equations. By 
inspection it can be seen that the transport equations at any section at time tn+1 

depend only on the information at time tn, and not on information at time tn+1, if 
the Courant number at that section is less than one. If the Courant number is 
greater than one, then the solution depends on information at time tn and infor-
mation at the next upstream section at time tn+1. This relationship suggests a 
solution procedure that starts at the upstream end of the channel and progresses 
downstream, simultaneously solving the five transport equations at each section 
in turn. The requirement for this solution procedure is that the Courant number 
everywhere exceeds zero. In physical terms this means that there cannot be 
reverse (upstream) flow anywhere in the channel. Reverse flow is not considered 
in this study.  

The progressive solution procedure is now described in a series of steps: 

1. At the upstream section the boundary conditions of water temperature, sur-
face ice concentration, frazil ice concentration, floe thickness, and deposited fra-
zil thickness are set as 

n 1 n 1
1 oT T+ +=  
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n 1
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n 1
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0
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h

h
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+

=

=

=

=

. (93) 

It is assumed that ice is not available at the upstream end of the channel. This 
assumption is reasonable for the reach of river below Oahe Dam, as virtually all 
the flow is released through hydropower turbines, and it is not physically possi-
ble for ice to be present in the released flow. The derivatives of the transported 
properties are therefore set as  

( )n 1 n
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T T
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+
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≈ −
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 (94) 
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n 1
a1

n 1
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0
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+

+

=

=
  . 

2. The thermal and transport equations are solved at the next downstream 
section. There are three possible cases: a) no ice cover exists between the present 
section and the next, in which case the ice cover index, Ω, is set equal to zero; b) 
a continuous ice cover exists between the present section and the next, in which 
case Ω is set equal to one; and c) the leading edge of the ice cover is found 
between the present section and the next. In this last case a section is interpolated 
between the present section and the next and the hydraulic and geometric proper-
ties of the sections are estimated. Ω is set equal to zero because the subreach 
from the present section to the leading edge of the ice cover is not ice covered. 
The next iteration starts from the interpolated cross section and proceeds to the 
next downstream section. As that subreach is ice covered, Ω is set to one. 

3. The Courant number is found for the next section, α and β calculated, and 
the coefficients of the Holly–Preissman scheme determined. The transport vari-
ables at the foot of the characteristic, T

ξ
, aC

ξ
, vC

ξ
, fh

ξ
, and ih

ξ
, are 

determined. 

4. The simultaneous solution of the five transport equations at a particular 
section is now described. At any section, xi+1, at time tn+1, the five transport equa-
tions are dependent only on the five transport variables n 1

i 1T +
+ , n 1

ai 1C +
+ , n 1

vi 1C +
+ , n 1

fi 1h +
+ , 

and n 1
ii 1h +

+ ; the variables at the foot of the characteristic that intersects xi+1 at tn+1, 
T

ξ
, aC

ξ
, vC

ξ
, fh

ξ
, and ih

ξ
, which can be calculated immediately using informa-

tion from the previous time step and the next upstream section; various known 
geometric and flow variables; and the air temperature. Let the five equations at 
section xi+1 at time tn+1 be represented as 

( )n 1 n 1 n n 1
i 1 i 1 , , , , 0f a a t t t U

ξ

+ + +
+ + + ∆ =

KK K  (95) 

where n 1
i 1a +
+
K  and na

ξ

K  are column vectors defined as 

n 1 n 1 n 1 n 1 n 1 n 1
i 1 i 1 ai 1 vi 1 fi 1 ii 1, , , ,a T C C h h+ + + + + +
+ + + + + + =  
K  (96) 

and 

n n n n n n
a v f i, , , ,a T C C h h

ξ ξ ξ ξ ξ ξ
 =  

K . (97) 
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It is assumed that all values are known except for those included in n 1
i 1a +
+
K . The 

above equations are nonlinear with respect to n 1
i 1a +
+
K . Consequently the unknowns 

in n 1
i 1a +
+
K  cannot be solved for directly. As done in the previous section the New-

ton–Raphson procedure is used for iteratively estimating n 1
i 1a +
+
K . Let n 1

i 1a +
+
K�  be an 

estimate of n 1
i 1a +
+
K . Then the equations included in n 1

i 1f +
+  above can be expanded in 

a Taylor’s series about n 1
i 1a +
+
K� : 

( ) ( )
n 1 n 1
i 1 i 1

n 1
n 1 n 1 n n 1 n 1 n 1i 1

i 1 i 1 i 1 i 1n 1
i 1 a a

0 , , , ,
f

f a a t t t U a a
aξ

+ +
+ +

+
+ + + + ++

+ + + ++
+ =

∂
= + ∆ + −

∂ K K�

KK K K K� �K  (98) 

or more simply, 

n 1 n 1 n 1
i 1 i 1 i 1f+ + +
+ + +δ = −F  (99) 

where 

( )
( )

n 1 n 1
i 1 i 1

n 1 n 1 n 1 n n 1
i 1 i 1 i 1

n 1 n 1 n 1
i 1 i 1 i 1

n 1
n 1 i 1
i 1 n 1

i 1 a a

, , , ,f f a a t t t U

a a

f
a

ξ

+ +
+ +

+ + + +
+ + +

+ + +
+ + +

+
+ +

+ +
+ =

= + ∆

δ = −

∂
=

∂
F

K K�

KK K�

K K�

K

 (100) 

n 1
i 1

+
+F  is a five-by-five square matrix; and n 1

i 1δ +
+  and n 1

i 1f +
+  are vectors. n 1

i 1δ +
+  is 

found by inverting n 1
i 1

+
+F  and multiplying both sides of the above equation:  

( )n 1 n 1 1 n 1
i 1 i 1 i 1f+ + − +
+ + +δ = −F . (101) 

Once n 1
i 1δ +
+  is found, a new estimate for n 1

i 1a +
+
K�  is produced: 

n 1 n 1 n 1
i 1new i 1old i 1a a+ + +
+ = += + δK K� � . (102) 

This procedure is repeated until n 1
i 1δ +
+  is smaller than some predetermined toler-

ance or until a maximum number of iterations has taken place.  

5. The derivatives of the transported properties are then found using eq 84 
through 86 described above. 
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6. At this point the solution procedure returns to step 2 and the sequence is 
repeated. The solution procedure continues until the end of the channel is 
reached. 

2.4 Simulation of stationary ice cover progression and retreat 

2.4.1 Background  

In rivers with any significant flow, stationary ice covers progress upstream 
from an initiation point as ice is brought to the leading upstream edge of the ice 
cover by the flow of the river. Many separate processes may occur at the leading 
edge, depending on the hydraulic flow conditions and the form of the arriving 
ice: 

1. Bridging. At very low flow velocities and relatively high concentrations of 
surface ice, it is possible for the ice cover to spontaneously arch across the open 
width of a channel and stop moving. In the Missouri River downstream of Oahe 
Dam, a stationary ice cover appears spontaneously in the backwater of Big Bend 
Dam where the flow velocity is very low. 

2. Juxtaposition. At relatively low flow velocities, ice floes arriving at the 
leading edge may simply come to a stop and assemble as a single layer of juxta-
posed floes. In this way the ice cover progresses upstream by juxtaposition. The 
maximum flow velocity at which juxtaposition occurs depends on floe geometry 
and channel depth. The ice cover progression in the Missouri River occurs 
largely through juxtaposition of frazil floes. 

3. Underturning of floes. At higher flow velocities, arriving floes may not 
assemble as a stable layer but may instead underturn. If flow velocity is not too 
high, the underturned floes remain as a jumbled accumulation at the leading edge 
of the ice cover. 

4. Ice cover shoving. Shoving in an ice cover can happen over a wide range 
of flow velocities. The cover collapses in the downstream direction and becomes 
thicker if the forces acting on it exceed its ability to withstand those forces. The 
strength of an ice cover formed from many separate pieces of ice increases with 
its thickness, so that when shoving takes place, cover strength increases. An ice 
cover may repeatedly shove and thicken as it progresses upstream. If an ice cover 
is treated as a “granular” material, its strength characteristics and its final thick-
ness can be estimated. 

5. Under-ice transport of floes. At relatively high flow velocities, ice floes 
arriving at the leading edge of an ice cover may be underturned and transported 
under the ice cover for considerable distances. At this point, further upstream 
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progression may be halted until the deposition of the floes somewhere down-
stream of the leading edge reduces the channel conveyance sufficiently to cause 
the upstream water levels to rise and the flow velocities at the leading edge to be 
reduced. 

6. No ice cover progression. An ice cover stops progressing upstream if flow 
velocities at the cover’s leading edge remain too high. In this case, open water 
remains upstream of the leading edge throughout the winter season.  

Simulation of ice cover retreat is more problematic than simulation of ice 
cover progression. In general, ice cover retreat is referred to as breakup. River ice 
cover breakup is bracketed by two ideal forms: thermal meltout and mechanical 
breakup. Thermal meltout results when an ice cover deteriorates through heat 
transfer from warm water (here, the definition of warm merely implies water 
with a temperature greater than 0°C) and/or absorption of solar radiation and 
melts in place, with little or no ice movement. Mechanical breakup requires no 
deterioration of an ice cover but rather results from the increase of stresses in the 
ice cover caused by increases in the flow rate. The stresses cause cracks and the 
ultimate fragmentation of the ice cover into pieces that are carried by the channel 
flow. In the case of the Missouri River downstream of Oahe Dam, the primary 
means of ice cover retreat is most likely a thermal meltout resulting from warm 
water released by Oahe Dam contacting the stationary ice cover. This occurs 
when the heat transfer from the open-water reach upstream of the leading edge is 
reduced because of mild weather conditions and the water released by the dam is 
not cooled to 0°C before reaching the leading edge. The present study proposes a 
criterion establishing the required amount of melting (actually ice cover weak-
ening and thinning) to effectively remove the ice cover. 

2.4.2 Governing equations for ice cover progression 

The progression rate of the stationary ice cover, Vcp, can be estimated by con-
serving the arriving mass of ice at the leading edge of the cover (Lal and Shen 
1993). If all the arriving ice is incorporated into the ice cover, 

( ) ( )cp i i cp i a1V t B e V U h BC− = +  (103) 

where ti = thickness of the progressing ice cover 
 B = width of the channel 
 ei = porosity of the ice cover 
 U  = mean flow velocity 
 ih  = mean thickness of the arriving ice floes 
 aC  = mean surface concentration of the surface ice. 
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The rate at which an ice cover progresses is then  

( )
i a

cp
i i i a1

Uh C
V

t e h C
=

− −
. (104) 

This equation is adequate to describe the progression of the ice cover as long as  

( )i i
a

i

1t e
C

h
−

<< . (105) 

This condition generally prevails because the progressing ice cover is thicker 
than the arriving ice floes, and aC  always is less than one. At very high 
concentrations of surface ice, it is possible that the stationary ice cover advances 
upstream in the form of a shock wave that halts the moving surface ice. The 
velocity of the propagating shock is determined by the concentration and material 
properties of the arriving surface ice (Lal and Shen 1992). In the case of the Mis-
souri River immediately downstream of Oahe Dam, observations show that sur-
face ice concentrations are low enough that the above equations suffice. 

2.4.3 Solution of the governing equations for ice cover progression 

Mean values of U , ih , and aC  are estimated in the subreach upstream of the 
ice cover. As the cross section information is interpolated at the location of the 
leading edge of the ice cover, information is available at this location and can be 
used to estimate U , ih , and aC  using a four-point finite-difference representation: 

( ) ( ) ( )n 1 n 1 n n
us le us le

1
2 2

U V V V V+ + − θθ
= + + +  (106) 

( ) ( )

( ) ( ) ( )

n 1 n 1 n 1 n 1
i ius f fus ile f fle

n n n n
ius f fus ile f fle

1 1
2

1
1 1

2

h h e h h e h

h e h h e h

+ + + +θ  = + − + + − 

− θ
 + + − + + − 

 (107) 

( ) ( ) ( )n 1 n 1 n n
a a us a le a us a le

1
2 2

C C C C C+ + − θθ
= + + +  (108) 

where V is the flow velocity. The subscript le implies the value at the leading 
edge of the ice cover, and the subscript us represents the variables at the cross 
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section immediately upstream of the leading edge of the ice cover. The extent of 
the progression of the ice cover in one time step, dl, can be estimated as  

( )
i a

i i ai

d
1

tUh C
l

t e hC
∆

=
− −

. (109) 

2.4.4 Estimation of ice cover retreat 

The overall heat balance for the stationary ice cover is 

( ) ( )m a iwi
m w

f i i i ii

ia i

D 1
D 1

T T Ht
T T

t e L Lh
H k

−
= + −

ρ ρ 
+ 

 

 (110) 

where ti is the thickness of the ice cover, and Hiw is the effective heat transfer 
coefficient between the ice cover and the water following beneath. Note that the 
effective heat transfer coefficient is set to zero as long as there is frazil deposited 
beneath the ice cover. In short, the water beneath the ice cover cannot melt the 
ice cover until any deposited frazil has been melted. Equation 110 can be solved 
using the finite-difference scheme proposed earlier: 

( ) ( ) ( ) ( )

( ) ( ) ( )

m a m an 1 n
ii ii n 1 n

f i i f i iii i

ia i ia i

n 1
n 1iwi

m i m
i i i i

1 1 11
1 1

1

T T T T
t t

t e L e Lh h
h k h k

HH
T T T T

L L ξ

+
+

ξ

+
ξ+

− −
− = θ + − θ +

∆ ρ ρ   
+ +         

+ θ − + − θ −
ρ ρ

. (111) 

The ice cover can thin if the water beneath the cover is warmer than Tm. It is 
assumed that the ice cover is melted out if the ice cover thickness is reduced by a 
preset fraction.  

2.5 Solution procedure for river ice model  

Before presenting the procedure details, it is useful to provide a brief sum-
mary of the overall solution procedure. 

1. The channel reach to be simulated is selected and schematized into cross 
sections. The geometry of each cross section is surveyed and entered into a for-
mat that lists the elevation and station of each surveyed point [the particular for-
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mat is typically referred to as the HEC-2 format (Corps of Engineers 1990)]. In 
addition, the distances between cross sections also are determined. 

2. The pre-processor program (Corps of Engineers 1997) analyzes each river 
section and prepares a look-up table of the geometric properties of each section 
as a function of a finite number of discrete water surface elevations. It estimates 
the geometric variables at a preset number of equally spaced elevations as 
described earlier. At this point, no ice information is required. 

3. A second separate pre-processor program (Corps of Engineers 1997) pre-
pares the time-varying boundary conditions data. For the case considered in this 
study, the following data are needed: the time-varying flow release of Oahe Dam, 
the time-varying stage at Big Bend Dam, the Oahe Dam release water tempera-
ture, and the observed air temperature. Typically this information would be in a 
HEC-DSS database (Corps of Engineers 1995). 

4. The river ice simulation model proceeds through each time step of the 
simulation period. For each time step the following sequence is followed: 

a) The hydraulic model simulates the flow based on the initial conditions at 
the start of the time step, the boundary conditions prescribed during the time step, 
and the extent and properties of the river ice cover. 

b) The thermal and ice transport model determines the water temperature and 
ice concentrations at each cross section based on the flow conditions determined 
by the hydraulic model and the extent and properties of the river ice cover. A 
cross section is interpolated at the leading edge of the ice cover and the water 
temperature and ice concentration estimated at this location. 

c) Ice cover progression and retreat is simulated based on the calculated flow 
conditions and the calculated thermal and surface ice concentrations. The thermal 
and transported ice concentrations at the leading edge of the ice cover are re-
estimated if the leading edge of the ice cover changes position. 

d) The river ice model returns to step a above. This sequence is repeated until 
the river ice conditions are simulated for the entire simulation period. 

5. After the simulation is completed, a separate post-processor program 
(Corps of Engineers 1997) writes the simulation model output to a HEC-DSS 
database. The following information is written to the database for each cross sec-
tion: the stage, the discharge, the water temperature, the frazil ice concentration, 
the surface ice concentration, the floe thickness, the deposited frazil ice thick-
ness, the stationary ice cover thickness, and the frazil ice thickness deposited 
under the stationary ice cover. In addition, the position of the leading edge of the 
ice cover is written to the database in river miles. 
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3 STATE–SPACE RIVER ICE MODEL 

3.1 Introduction 

The previous chapter presents the river ice model with its three components: 
a river hydraulic component, a thermal and ice transport component, and an ice 
cover progression component. In applying such a model to actual water bodies, 
discrepancies often arise between the model results and the actual observed field 
conditions. The reasons for such discrepancies are discussed in the first chapter 
and may be grouped into three categories: model error, input error, and errors in 
the empirical coefficients used in the model. A state–space model incorporates, 
or assimilates, observations into the model to reduce the model error to a mini-
mum. This chapter presents a state–space model based on the river ice model 
described in Chapter 2. The state–space river ice model potentially incorporates 
two state–space components: a hydraulic state–space model and a thermal and 
ice transport state–space model.  

In actual application to the Missouri River, there are no accurate observations 
available for any of the state variables used for the model. As a result, only the 
hydraulic state–space model is used in this study. The thermal and ice transport 
state–space model is not employed. However, its development is described, and 
the field observations needed to implement it are discussed. The intent is that the 
U.S. Army Corps of Engineers, and other agencies, will set up the field instru-
mentation needed for improved forecasting and monitoring of ice conditions. 

3.2 Hydraulic state–space model 

3.2.1 State variables 
As described by Kailath (1980), knowledge of the state vector at a time, to, 

specifies the state or condition of the system at that time. The values of the state 
vector allow responses to future inputs to be determined without reference to 
inputs that occurred before time to. In this way the state vector is a sufficient sta-
tistic; it contains just enough information, no more and no less, to enable the cal-
culations of future responses without reference to the old history of inputs and 
responses. In the case of an open channel in which the geometry and hydraulic 
roughness are fixed, the flows and stages at each cross section would be suffi-
cient for the state vector. In the case of a channel in which the ice cover is vary-
ing with time, the extent of the ice cover and the ice roughness must also be a 
component of the state vector. The concentration of floating surface ice and the 
concentration of suspended frazil ice do not influence the flows and stages, as 
this a free drift model in which those components are considered to move at the 
flow velocity and provide no hydraulic resistance. 
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Ice cover thickness could also be considered as a possible component of the 
state vector. However, ice thickness was also not included, for several reasons. 
First, observations of ice thickness are rarely available, and there is little to no 
opportunity to update the model estimation of the ice thickness. Second, in large 
channels, which are the intended subjects of this model, ice cover thickness has 
little influence on the stages and flows. In large channels the ice extent and 
roughness play a much greater role. Last, there is a practical consideration with 
regard to the size of the state vector. The number of elements of the error covari-
ance matrix, P, and the state transformation matrix, Φ, are equal to the square of 
the number of components of the state vector. The number of operations required 
to create and propagate these matrices in time is proportional to the square (and 
even the cube) of the number of elements. There is a trade-off required between 
the comprehensiveness of the state vector and the efficiency and computational 
run time of the simulation. In this case, not including the ice thickness is the nec-
essary result. 

The state vector at time n + 1 is n 1+X . It contains flows, stages, ice extents, 
and conveyance factors as follows: 

Tn 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1
1 1 j j 1 j v1 vk, , , , ,Q H Q H ds us C C+ + + + + + + + + = Σ Σ X … … … . (112) 

The following discussion takes advantage of the fact that n 1+X  can be naturally 
partitioned in two parts, one part containing the flows and stages and a second 
containing the ice cover extents: 

Tn 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1
1 1 j j 1 j v1 vk

Tn 1n 1 n 1

, ,... , , ... ,Q H Q H ds us C C

b

+ + + + + + + + +

++ +

 = Σ Σ = 

 Σ  

X

C

…

K . (113) 

The sub-vector n 1b +K  is identical to that of the previous section. The state vector 
at time n can be written in a similar manner: 

Tn n n n n n n n n
1 1 j j 1 j v1 vk

T
n n n

, , ... , , ... ,Q H Q H ds us C C

b

 = Σ Σ = 

 Σ  

X

C

…
K . (114) 

The elements of X are variables, and from this point forward they should be con-
sidered as random variables with an associated Gaussian probability distribution 
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function. The number of elements in X is determined by the number of cross 
sections used in the simulation. There are separate elements representing the 
stage, the discharge, the downstream ice extent, the upstream ice extent, and the 
conveyance factors for each section. At the extreme upstream and downstream 
sections only one ice extent is required. These two sections have elements repre-
senting the stage and discharge but the upstream section has only a downstream 
ice extent and the downstream section only an upstream ice extent. Altogether 
there are 4n – 2 elements in X, where n is the total number of sections. 

3.2.2 System model 

The system model is the one derived above, but at this point, in keeping with 
the designation of the elements of the state vector as random variables, the con-
cept of uncertainty is required to enter the derivation. It can be done in the fol-
lowing manner: 

( )n n 1 n, , , ,f a b t t t U ++ ∆ = w
K KK  (115) 

where the equations represented by f have been described in section 2.2 above. 
The elements of nw  describe the uncertainties associated with each equation in f. 
The uncertainties are assumed to be Gaussian white noise with a known variance, 
Q. The non-diagonal elements of Q are all zero, because the individual compo-
nents of Q are assumed to be uncorrelated. In principle the uncertainty can vary 
with time and position. Equation 115 is written in the most general form that 
allows for both. In a subsequent chapter the distribution of uncertainty along the 
channel is explored. Equation 115 is extended by additional equations describing 
ice extent at each time: 

1

j

n 1 n n
1 1

n 1 n n
j j

n 1 n n
vj 1 vj 1 j 1

n 1 n n
vk vk k

d ds s w

us us w

C C w

C C w

+

+

+
+ + +

+

∑ − ∑ =

∑ − ∑ =

− =

− =

#

#

. (116) 

The extent of the ice cover is assumed to be constant over the time interval of 
the calculation. In shorthand notation the entire set of equations expressed using 
eq 115 can be stated as 
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( )
( )
( )

( )

n n 1

n 1 n 1 n n 1 n n
s s

n 1
v
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f a b t t t U

f f U

C

+
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+

 + ∆
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C
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K
Γ . (117) 

All the elements of n 1+X , nX , and n 1+U  are random functions. n 1 nˆ ˆ,+X X , and 
n 1ˆ +U are the best estimates of n 1+X , nX , and n 1+U , defined by the expectation 

operator, E, as 

n 1 n 1

n n

n n

ˆ E

ˆ E

ˆ E

+ +=

=

=

X X

X X

U U

. (118) 

nΓ  in eq 117 is required to specify a system noise value for each equation. They 
are discussed further in Chapter 4. For now, it can be mentioned that, by its size 
and form, nΓ  allows any number of separate system noises to be specified. For 
example, each equation could have its own noise specified, in which case nΓ  
would be the identity matrix. Similarly all the continuity equations could have 
one noise and all the momentum equations could have another, in which case nΓ  
would be have j rows and two columns, with elements alternating ones and zeros. 
(Of course, the number of elements in the vector wn+1 would have to change 
commensurately.) The system equation can be expanded in a Taylor’s series as 
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 (119) 

This equation can be restated as 

n 1 1 n 1 n 1 1 n 1 n n+ − − + − −= − − − + −X F GX F KU F N F wΓ  (120) 

where 
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N is unaffected by the expectation operator. Equation 120 can be restated in 
state–space model form as 

n 1 n n n n 1 n n n+ += Φ + Λ + +X X U N wΓ  (122) 

where 

n 1

n 1

n 1 n

n 1 n

−

−

−

−

= −

= −

= −

= −

F G

F K

N F N

F

Φ

Λ

Γ Γ

 (123) 

The elements of the state vector are random elements with Gaussian prob-
ability distribution functions (pdf’s). To completely describe a Gaussian pdf, two 
quantities are required: the mean or expected value of the distribution and the 
variance of the distribution. The best estimate or expected value of the state vec-
tor at time n is defined as nX̂ . n nˆ E=X X  where E is the expectation operator. 
The evolution of the mean of the distribution can be found, to first-order accu-
racy, as 

( ) ( )n 1 n n 1 n 1 n n 1
s s

ˆ ˆ ˆ, , , , 0E f U f U+ + + += =X X X X
K

. (124) 

Solving the set of equations fs for the unknown variables in n 1ˆ +X  provides an 
estimate of the mean of the pdf’s of the random elements of n 1+X . The equations 
included in f are solved using the Newton–Raphson procedure as described the 
previous chapter.  



48 ERDC/CRREL TR-03-9 

 

3.2.3 Error covariance propagation 

The covariance of the state variables at time n + 1 is defined as 

n 1 1 1 1 1 Tn n n nE E E+ + + + +   = − −   P X X X X  . (125) 

Substituting the state equations for n 1+X , the covariance becomes 

n 1 n n n n n n n

T
n n n n n n n

E E E

E E

+     = < − + − +     

    − + − + >     

P X X U U w

X X U U w

Φ Λ Γ

Φ Λ Γ
. (126) 

Finally 

n 1 n n n T n n n T n n T+ = + +UP P P QΦ Φ Λ Λ Γ Γ  (127) 

where PU is the covariance matrix associated with the input vector U. The model 
input is assumed to be corrupted by white noise with zero mean. It is necessary to 
estimate the variance of the pdf’s of n+1X  as they propagate in time. It is 
appropriate at this time to discuss the practical details of creating the nΦ  matrixes.  

nΛ and nΓ  are transition matrices that can be specified once and do not need 
to be computed. nΛ  is required to relate the imposed boundary conditions to the 
proper equations.  

As shown above, nΦ  is the product of the F–1 and G matrixes. F is the Jaco-
bian matrix formed by the derivatives of fs with respect to n 1ˆ +X , and G is the 
Jacobian matrix formed by the derivatives of fs with respect to nX̂ .  F can be 
represented as a partitioned matrix: 

n 1 n 1 n 1

n 1 n 1 n 1 n 1

n 1 n 1 n 1

ˆ 0 0 0 0 0 0

ˆˆ 0 0 0 0 0 0

ˆ 0 0 0 0 0 0

b

b

b

f f f

fs

+ + +

+ + + +

+ + +

    = = Σ =       

    = = = Σ =       

    = = Σ =       

 
∂ ∂ ∂ 

 ∂ ∂ ∂
 
 

∂ ∂ Σ ∂ Σ ∂ Σ = =  ∂ ∂ ∂ ∂
 
 

∂ ∂ ∂
∂ ∂ ∂
 

X X X C

X X X X X C

X X X C

X X X

F
X X X X

C C C
X X X

K

K

K




 (128) 
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The advantage of expanding F in this manner is that the computation 
required to invert F is greatly reduced, as is shown next. The first term (the parti-
tion in the upper left corner) can be expanded as 

[ ]

n 1 n 1ˆ ˆ ˆ0 0 a a0 0

a
ˆa a

ˆ

b b

f a f
a

f
a

+ +     = ==        

 = 

   ∂ ∂ ∂   = =   ∂ ∂ ∂
    

 ∂  =
 ∂
 

X X
X X

I F

K K K K

K K

K
K

K
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which is the same matrix that was determined during the solution of the hydraulic 
model as described above. The following matrixes can be readily resolved: 

[ ]

[ ]

n 1

n 1

ˆ 0 0

ˆ 0 0

0

0

b

b

+

+

 =  

 =  

∂ Σ
=

∂

∂
=

∂

X

X

X

C
X

KK

KK

 

[ ]

[ ]

n 1

n 1

0 0

0 0

0

0

+

+

 = Σ 

 =  

∂
=

∂

∂ Σ
=

∂

X

X C

C
X

X

K

K
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and are all the null matrix (all the elements are zero). The upper partition on the 
right side of the matrix contains the derivatives of the continuity and momentum 
equations. These derivatives must be estimated. The lower partitions on the right 
are the identity matrix: 

[ ]

[ ]

n 1

n 1

ˆ0 0

0 0

+

+

 = Σ 

 =  

∂ Σ
=

∂

∂
=

∂

X

X C

I
X

C I
X

  . (131) 
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Now F can be written as a partition matrix in the form 

n 1 n1
a

0 0 0 0

0 0
0 0

f f
+   = Σ =    

 ∂ ∂
 ∂ ∂ 
 

=  
 
 
 
  

X X C

F
X X

F I
I

 (132) 

where I is the identity matrix. One advantage of this approach is that Fa is found 
as a step in the state estimate propagation and does not need to be recalculated. 
Recall also that Fa was inverted as a step in the solution of the hydraulic model. 
As a result, Fa

–1 is known and F–1 can be calculated as 

n 1 n 1

1 1
a1

0 0 0 0

0

a
f f

+ +

− −
−

   = Σ =   

  ∂ ∂  −
  ∂ ∂=

  
 
 

X X C

F F
X XF

I

. (133) 

Next the matrix G is  

n n

n n n n

n n n

ˆ 0 0 0 0 0 0
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ˆ 0 0 0 0 0 0
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b

b
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 ∂ ∂ ∂
 
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X X X

K

K

K

 (134) 

where 
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and –I is the negative identity matrix. Therefore, Φ, the product of the F–1 and G 
matrices, is  

[ ]n

1 1
a aˆn 0 0

0

b

f
G− −

 =  

 ∂
 

Φ = ∂ 
 − 

X
F F

X

I

K
 (137) 

where  

n 1 n 1 n n0 0 0 0 0 0 0 0

f ff fG
+ +     = Σ =  = Σ =      

∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂X X C X X CX X X X
. (138) 

3.2.4 Observation equation 

The relationship between the observations and the state variables can be 
expressed as 

n 1 n 1 n 1 n 1v+ + + += +z H X  (139) 
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where n 1+z  contains the observations made at time n, n 1+H  is the observation 
matrix that relates the observations to the state variables, and v is the measure-
ment noise vector. It is assumed that E[v] = 0 and that cov[vj,vk] = E[vjvk

T] =  
Rn δij, where δij is the Kronecker operator. The types and frequencies of observa-
tions that are available for the case considered in this study (the Missouri River 
downstream of Oahe Dam) are discussed in Chapter 4. Typically there are sev-
eral observations of stage and an observation of the ice cover extent. The obser-
vation of the leading edge of the ice cover must be converted into observations of 
the upstream and downstream ice extent at each section. This produces 2n – 2 ice 
observations. Let J be the number of stage observations. z is then a vector J + 2 
n– 2 elements in length. The matrix H is J + 2n – 2 by 4n – 2 in size and is com-
posed of elements that are either ones or zeros. 

3.2.5 Updating procedure 

There are two means of estimating the state variables: through the solution of 
the system equation or through observation. The Kalman gain is the procedure by 
which these two methods of estimation are reconciled. Let ( )n 1ˆ + −X  be the a 
priori (prior to the observation) system estimate and ( )n 1+ −P  be the a priori 
covariance estimate. Following the discussion of Grewal and Andrews (1993) an 
updated estimate ( )n 1ˆ + +X  is sought that is a linear function of the a priori esti-
mate, ( )n 1ˆ + −X , and the observation, n 1+z . In the present case the Kalman gain, 
Kn+1, is 

( ) ( )
1n 1 n 1 T n 1 T −+ + + = − − + K P H HP H R . (140) 

The system estimate update and covariance update are 

( ) ( ) ( )n 1 n 1 n 1 n 1 n 1 n 1ˆ ˆ ˆ+ + + + + + + = − + − − X X K z H X  (141) 

( ) ( )n 1 n 1 n 1 n 1+ + + + + = − − P I K H P . (142) 

3.3 Thermal and transport state–space model 

3.3.1 State variables 

The state vector of the thermal and ice transport state–space model at time  
n + 1, Tn+1, contains the water temperature, the longitudinal temperature deriva-
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tive, the surface ice concentration, the longitudinal surface ice concentration 
derivative, the suspended frazil ice concentration, and the longitudinal frazil ice 
concentration derivative for each cross section used in the simulation: 

n 1

n 1 n 1 n 1 n 1 n 1 n 1 n 1
1 1 a1 a1 f1 f1 j

n 1 n 1 n 1 n 1 n 1 T
j aj aj fj f

[ , , , , , ... ,

, , , , ]j

T TX C CX C CX T

TX C CX C CX

+

+ + + + + + +

+ + + + +

=T

 (143) 

The state vector at time n is formed similarly: 

Tn n n n n n
1 1 a1 a1 f1 f1n
n n n n n n
j j aj aj fj fj

T , TX , C , CX ,C , CX ...

T , TX , C , CX , C , CX

 
=  

  
T  (144) 

The elements of T are variables, and from this point forward they are considered 
as random variables with associated Gaussian probability distribution functions. 

3.3.2 System model 

The system model is based on the equations presented in the previous chapter 
as part of the development of the thermal and ice transport model. There are six 
equations for each cross section included in the simulation. The equations are 
repeated here for convenience of referral: 

( ) ( ) ( ) ( )
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CC A A

+
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ξ +

+
ξ
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ξ ξ

++
ξ+

ξ ξ+ +
ξ

θ
− = − Ω − −

∆ ρ

− θ
+ − Ω − − +

ρ

ρ  θ − + − θ − + ρ

− θθ
Ω − + Ω −

ρρ

 (145) 



54 ERDC/CRREL TR-03-9 

 

( )
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( )

n 1
ai
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( ) ( ) ( ) ( )

( )

( ) ( ) ( )

n 1 n 1 n
f i f ξ f m i f m ξ
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( )
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In addition to the six equations at each section, there are three auxiliary equations 
describing the values of the water temperature, surface ice concentration, and 
frazil ice concentration at the foot of the characteristic: 

n n n n n 1 n 1
1 i 1 2 i 3 i 1 4 i 5 i 1 6 i 1cT c T c T c TX c TX T c TX+ +

ξ − − − −= + + + + +  (151) 

n n n n n 1 n 1
a 1 ai 1 2 ai 3 ai 1 4 ai 5 ai 1 6 ai 1C c C c C c CX c CX c C c CX+ +

ξ − − − −= + + + + +  (152) 

n n n n n 1 n 1
f 1 f i 1 2 f i 3 f i 1 4 f i 5 f i 1 6 f i 1C c C c C c CX c CX c C c CX+ +

ξ − − − −= + + + + + . (153) 

The above system of equations can be represented compactly in the form 

( )n 1 n n 1 n, ,f + + =T TT T U w . (154) 

The elements of w describe the uncertainties associated with each equation in 
fT. The uncertainties are assumed to be Gaussian white noise with a known vari-
ance. The distribution in space and time and the relative magnitudes of the 
uncertainties are explored in the next chapter. All the elements of Tn+1, Tn, and 
UT

n+1 are random functions. n 1 nˆ ˆ,+T T , and n 1ˆ +
TU  are the best estimates of Tn+1, Tn, 

and UT
n+1, defined by the expectation operator, E, as  

n 1 1ˆ
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n
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n n
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T T

T T

U U

 (155) 
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The system equation can be expanded in a Taylor’s series, using the best 
estimates, as 

( ) [ ] ( )
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( ) ( )
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n n 1

n 1 n n 1 n 1 n n 1
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This equation can be restated compactly as 

n 1 1 n 1 n 1 1 n 1 n 1+ − − + − − += − − − + −T T T T T T T T TT F G T F K U F N F w  (157) 

where 
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NT is unaffected by the expectation operator. This equation can be restated in 
state–space model form as 

n 1 n n n n 1 n n n+ += Φ + Λ + + ΓT T T T TT T U N w  (159) 

where  
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n 1
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n 1

n 1 n

−

−

−
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Λ = −

= −
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T T T

F G

F K

N F N

 (160) 

3.3.3 Covariance propagation 

The covariance propagation can be described as being analogous to that 
undertaken in the previous section. The error covariance is  

n 1 n n nT n n nT+ = Φ Φ + Λ Λ +
T

T T T T T T TUP P P Q . (161) 

3.3.4 Observation equation 

The relationship between the observations and the state variables can be 
expressed as 

n 1 n 1 n 1 n 1v+ + + += +T T T Tz H T  (162) 

where n 1+z  contains the observations made at time n, n 1+H  is the observation 
matrix that relates the observations to the state variables, and v is the measure-
ment noise vector. It is assumed that E[v] = 0 and that cov[vj,vk] = E[vjvk

T] = Rn 
δij, where δij is the Kronecker operator. The types and frequencies of observations 
that are available for the case considered in this study (the Missouri River down-
stream of Oahe Dam) are discussed in Chapter 4. Unfortunately there were no 
observations of water temperature that could be used for the present study, nor 
were there any of the transported ice quantities or the ice cover thickness. 

3.3.5 Updating procedure 

As described earlier, the Kalman gain is found as 

( ) ( )
1n n n T n n n T −

 = − − + T T T T T T TK P H H P H R  (163) 

and the system estimate update and the covariance update are, respectively, 

( ) ( ) ( )n n n
T

ˆ ˆ ˆ + = − + − − T TT T K z H T  (164) 

and 

( ) ( )n n n n
T  + = − − T T TP I K H P . (165) 



58 ERDC/CRREL TR-03-9 

 

4 APPLICATION TO THE MISSOURI RIVER BELOW OAHE 
DAM, SOUTH DAKOTA 

4.1 Introduction 

The Missouri River is a major river in North America. Its watershed encom-
passes portions of at least 12 states, and it reaches into Canada. There are six res-
ervoirs on the Missouri that serve a variety of uses: flood control, irrigation, 
hydropower production, and recreation. Oahe Dam is located on the Missouri 
River at Pierre, South Dakota, and forms Oahe Reservoir (Fig. 1). The flows in 
the Missouri River downstream of Oahe Dam are completely controlled by Oahe 
Dam, with the exception of the Bad River and other smaller tributaries. The 
overall movement of water from Oahe Dam is a function of the flow conditions 
of the reservoir system along the Missouri River.  

The Corps of Engineers’ Reservoir Control Center (RCC) in Omaha, 
Nebraska, schedules daily releases that must take into account the multipurpose 
uses of the reservoir system. Within this framework the hourly releases out of 
Oahe Dam are usually determined by the requirements for hydroelectric power 
production as determined by the Western Area Power Administration (WAPA). 
Consequently the flows in the Missouri River can change on an hourly basis. In 
fact, the flow out of Oahe Dam is rarely constant over a 24-hour period. It can 
change from a minimum of 0 cfs to a maximum of about 55,000 cfs. As 
described in Chapter 1, the presence of river ice decreases the hydraulic convey-
ance of the Missouri River and causes the stage in the river to rise. If the river ice 
cover has advanced into the Pierre area, the increased stages can potentially 
cause flooding at Pierre and Fort Pierre. The RCC reduces Oahe releases as river 
stages approach alert levels at any of the four gages downstream of Oahe Dam. 
The ability to forecast ice cover extent and river stages is potentially a valuable 
tool for the operators of the dam. 

In this chapter the reach of the Missouri River downstream of Oahe Dam is 
simulated using the state–space model derived in the previous chapters. The goal 
is to employ the state–space model to forecast river stages when ice is present. 
The several steps required to reach this goal are described here. First, the steps 
necessary to apply the deterministic river ice model derived in Chapter 2 are 
described. It is shown that the deterministic model can simulate the flows when 
ice is not present with quite good results. Simulation of the flows and the river 
ice conditions for three winters in which river ice played a major role are then 
presented. The results, although encouraging, highlight the difficulties in model-
ing river ice for a reach of highly varying flow. The possible causes of the inac-
curacies are discussed. Next, to apply the state–space model the Kalman filter 
parameters are estimated through numerical experiment. The three winter seasons 
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are subsequently simulated (or hindcast) using the available stage and ice cover 
observations to update the state–space model. The problems incurred with miss-
ing and bad data are discussed. A particular severe problem for this reach of the 
Missouri River, though a common problem for most rivers, is the huge number of 
stage observations compared to the number of ice observations. A procedure for 
dealing with this imbalance is suggested. Finally, the state–space model is used 
to provide simulated forecasts during two winter periods. The results are then 
compared to those obtained from the deterministic model. 

4.2 Application of the river ice model 

There are ample data available for the Oahe Dam reach of the Missouri River 
(Table 1); the Pierre, LaFramboise, and Farm Island gages have collected data 
since the mid-1980s. Stages are typically measured once an hour by automatic 
gages that transmit the data via geostationary satellites every four hours. The 
information from these gages is available in computerized form as indicated by 
the notation DSS in the table. As shown later in this study, on occasion, each of 
these gages can go off-line due to freezing in the winter, mechanical failure, or a 
problem with the data stream. In the 1990s, computerized information became 
available at the Oahe Dam tailwater and at the Big Bend Dam reservoir. Big 
Bend Dam is located approximately 90 miles downstream of Oahe Dam. 

In addition to flow stage, there is also information available on water tem-
perature, air temperature, and ice cover extent downstream of Oahe Dam. Air 
temperature data are available as daily maximums and minimums at Oahe Dam. 
In addition, some hourly air temperature information is collected at the Pierre 
gage, although these data have large gaps. The water temperature data are espe-
cially weak, as only one measurement per day is available for the water tem-
perature outflow of Oahe Dam. The water temperature measurements at the 
Pierre gage are of very low quality, especially after about 1990. 

The information available on ice cover formation is generally in the form of 
observer reports. It is summarized elsewhere (Corps of Engineers 1995). Obser-
vations of the leading edge of the ice cover are made from the river’s banks or 
from small planes. The scheduling of the ice observations depends on the con-
straints of weather, road conditions, and manpower availability. Typically the 
observations are made only when the leading edge of the ice cover approaches 
Pierre and are made once, or at most twice, a day. Often there are a number of 
days with no observations. It is interesting to note that there has never been a 
single direct measurement of the ice thickness in the Missouri River near Pierre. 
The rapidly changing and dangerous ice conditions in the river have prevented 
such measurements.  
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Table 1. Data sources available for the Missouri River downstream of 
Oahe Dam. 

Period of record 

Data 
Time 

interval Form Start End 

Flow 
Oahe Dam release 1 day DSS* 1958 1 July 94 
 1 hour DSS 1984 Present 
 1 hour Paper 1968 1984 

Water temperature 
Oahe Dam release 1 day Paper and DSS 1968 Present 
 1 hour HP data logger 1987 1989 
 Irregular Fluke thermistor 1986 1986 

1 hour DCP** 1988 Present Missouri River at Pierre 
gage Irregular Fluke thermistor 1986 1986 

Air temperature 
Oahe Dam daily maximum 1 day CD-ROM 1962 Present 
Oahe Dam daily minimum 1 day CD-ROM 1962 Present 

Stages 
Big Bend Dam 1 day DSS 1963 Present 
Farm Island gage 1 hour DSS 1985 Present 
LaFramboise gage 1 hour DSS 1985 Present 
Pierre gage 1 hour DSS 1982 Present 
Oahe tailwater 1 hour DSS 1994 Present 

River ice cover 
 Irregular Observations 1988 Present 

*DSS: Data Storage System—a computerized database developed by the Corps of Engi-
neers. 
**DCP: Data Collection Platform—a device for collecting and transmitting data using 
geostationary satellites. 

 

Information was available describing the geometry of the channel at a num-
ber of cross sections. The Corps of Engineers (1995) describes this information 
in detail. A summary of the geometric data is given in Table 2. The cross-
sectional areas and top widths cited in the table were determined for a steady 
flow of 20,000 cfs. Examination of the table indicates that the channel top width 
and cross-sectional area increase in the downstream direction. Big Bend Dam 
controls the stage at the downstream end of the channel; the reservoir created by 
that dam is responsible for the large top widths and cross-sectional areas. 
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Table 2. Summary of geometric data for the Missouri River. 

River mile 
Min. channel elev. 

(ft) 
Cross-sect area 

(ft2) Top width (ft) 
1,071.92 1,403.50 15,900.37 772.86 
1,071.39 1,403.50 15,897.92 772.85 
1,070.97 1,406.20 18,902.27 1,061.49 
1,070.46 1,408.80 25,170.54 1,552.22 
1,070.14 1,408.60 20,487.88 1,452.00 
1,069.7 1,411.00 25,159.09 2,050.53 
1,069.30 1,411.10 28,440.05 2,219.08 
1,068.87 1,412.30 20,887.21 1,627.00 
1,068.41 1,409.90 18,780.97 1,248.87 
1,068.09 1,408.40 20,283.44 1,436.50 
1,067.63 1,409.50 28,482.31 2,177.13 
1,067.34 1,408.30 30,161.29 2,423.68 
1,066.84 1,406.70 27,866.77 2,167.73 
1,066.52 1,400.30 26,093.57 1,630.35 
1,066.50 1,400.30 25,883.46 1,629.61 
1,066.32 1,400.30 25,614.98 1,628.66 
1,066.29 1,400.30 25,402.32 1,627.91 
1,065.97 1,399.20 22,470.73 1,794.08 
1,065.54 1,399.20 21,928.05 1,791.15 
1,065.11 1,405.60 16,152.22 1,498.25 
1,064.82 1,405.00 16,836.53 1,397.61 
1,064.27 1,404.90 18,020.16 1,562.91 
1,063.52 1,399.20 16,827.29 1,450.18 
1,062.78 1,402.80 20,154.77 2,035.91 
1,061.69 1,403.10 21,423.64 2,186.29 
1,060.58 1,399.60 21,405.55 2,041.65 
1,059.49 1,406.70 23,776.54 2,280.49 
1,058.62 1,405.30 24,057.19 2,232.24 
1,057.64 1,397.70 25,250.77 2,827.00 
1,056.36 1,408.00 35,360.91 4,695.00 
1,055.31 1,405.70 42,634.86 5,967.96 
1,053.02 1,410.60 41,353.67 5,406.90 
1,051.37 1,405.00 41,563.24 4,885.27 
1,049.30 1,409.70 41,606.06 4,659.24 
1,046.52 1,402.20 36,549.80 3,203.48 
1,043.86 1,403.90 49,671.56 5,038.47 
1,040.94 1,402.20 54,396.74 5,386.30 
1,037.30 1,396.70 55,109.22 4,366.97 
1,033.30 1,391.00 89,550.06 4,216.43 
1,025.32 1,375.00 150,551.83 4,687.01 
1,018.73 1,366.80 176,144.78 4,912.13 
1,014.86 1,357.30 218,995.92 8,431.96 
1,010.60 1,361.40 197,997.52 7,328.58 
1,005.90 1,359.00 348,054.94 11,543.77 
1,000.50 1,349.80 227,341.95 5,792.19 

996.60 1,342.80 287,998.22 7,361.57 
995.26 1,344.40 466,425.94 9,320.00 
993.78 1,343.40 503,528.50 11,675.34 
992.31 1,344.70 388,249.91 10,248.16 
990.92 1,344.00 488,879.91 10,295.34 
989.74 1,346.90 383,738.41 6,837.44 
988.62 1,344.50 324,166.63 5,946.20 
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The geometry data describing each cross section were available in a form 
suitable for the program HEC-2 (Corps of Engineers 1990). The channel geome-
try includes a description of each river cross section, the channel roughness as 
characterized using the Manning’s roughness coefficient, the spacing between 
cross sections, and other pertinent information. A pre-processor program (Corps 
of Engineers 1997) analyzed each cross section to produce a look-up table of the 
geometric properties as a function of water surface elevations. Typically, 12 
water surface elevations, spaced at 2-ft intervals were used to generate the look-
up table. The information in the table includes the channel area, conveyance (eq 
8), top width, and wetted perimeter. The calibration process entailed adjusting the 
Manning’s roughness coefficient until the model reproduced the observed stages 
along the channel to within a predetermined tolerance. 

The hydraulic component of the model was calibrated to match the record of 
observed open-water peak stages during the period of 1–30 June 1998 by adjust-
ing the channel Manning’s roughness coefficient. Figure 3 displays the outflow 
from Oahe Dam during this period. The flow was highly unsteady, and the outlet 
discharge was zero during some period in almost each day of the simulation 
period. Figure 4 compares observed and simulated stage hydrographs at the Oahe 
Dam tailwater, Pierre, La Framboise Island, and Farm Island gages. Table 3a lists 

 

Figure 3. Recorded outflows out of Oahe Dam during June 
1998 in thousands of cfs. 
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a. Oahe tailwater gage. 

 

b. Pierre gage. 

Figure 4. Observed and simulated stages at the four gages. 
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c. LaFramboise gage. 

 

d. Farm Island gage. 

Figure 4 (cont.). Observed and simulated stages at the four gages. 
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Table 3. Calibrated Manning’s coeffi-
cients. 

a. Open water 

River mile 
Channel Manning's 

roughness coefficient 
1071.92  

 0.022 
1066.32  

 0.025 
1065.11  

 0.018 
1064.82  

 0.022 
1064.27  

 0.022 
1061.69  

 0.022 
1059.49  

 0.024 
1058.62  

 0.021 
1057.64  

 0.021 
1055.31  

 0.0225 
1053.02  

 0.015 
988.62  

b. Ice cover 

Reach 

Ice 
thickness 

(ft) 
Ice roughness 

coefficient 
Big Bend Dam to Farm Island (RM 1059.5) 1.5 0.020 
Farm Island to RM 1062.8 1.0 0.042 
RM 1062.8 to LaFramboise Island Gage (RM 1064.8) 0.5 0.035 
La Framboise Island Gage to Oahe Dam 0.5 0.070 
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estimated values of Manning’s roughness coefficient. The simulation model was 
able to accurately simulate both the peak stages and the timing of the peak stages 
at all the gage locations. Only the values of Manning’s roughness coefficient for 
the channel were determined during the calibration as there was no flow in the 
channel overbanks. 

The 14–26 January 1994 period was selected for calibration of the ice cover 
Manning’s roughness coefficient. The ice cover roughness coefficients were cali-
brated by fixing the ice cover thickness and extent and adjusting its hydraulic 
roughness to match the maximum observed stages. The extent was determined 
from available observations. It was expected that the Manning’s roughness coef-
ficient associated with the ice cover would vary with location and time. In this 
calibration procedure a conservative, upper-bound estimate of the Manning’s 
coefficient for the ice cover was sought. The 20–21 January period was selected 
as the ice cover was at its maximum extent at river mile 1064.5. Figure 5 shows 
Oahe Dam outflow and ice cover progression for 14–26 January 1994, as well as 
the observed and simulated stages at the Pierre, La Framboise Island, and Farm 
Island Gages. During the 19–21 January period the observed and simulated 
stages compare well. Before 19 January the model overestimates stage because 
the leading edge of the observed ice cover had not yet reached its maximum 
extent. The resulting estimates of Manning’s coefficients for the ice cover are 
listed in Table 3b. 

Three wintertime periods were selected to simulate the discharges, the stages, 
and the advance and retreat of the river ice cover in the Missouri River down-
stream of Oahe Dam. They are 15 December 1996 through January 1997, 18 
January 1996 through 11 February 1996, and 7 January 1994 through 3 March 
1994. The information available for these periods is listed in Table 4. There are 
essentially no data available on the water temperature downstream of Oahe Dam 
for any of these periods. The water temperature measurements at the Pierre Gage 
are either missing or of such bad quality as to be unusable. The channel Man-
ning’s coefficients determined during the June 1998 period were used in the 
wintertime simulation, as were the Manning’s coefficients found during the 
January 1994 period. 

The following additional parameters were estimated prior to simulating ice 
cover progression. Values assigned to the parameters were estimated based on 
previous studies, physical insight, and extensive numerical experimentation: 

1. Water-to-air heat transfer coefficient. This parameter controls the heat trans-
fer rate from the water to the atmosphere. It was set at a value of 24 W m–2°C–1. 
This value was found in previous study of the Missouri River (Corps of 
Engineers 1995). 
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Figure 5. Observed and simulated stages during the ice-affected period of 
January 1994. (PIR = Pierre; LFSD = LaFramboise; FISD = Farm Island).  
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Table 4. Summary of data for ice periods. 
Data type Gage site Frequency Quality Notes 

a. 15 December 1996 through January 1997 
Elevation gages Oahe Tailwater Hourly Good  
 Pierre  Hourly Good  
 LFSD Hourly Good  
 FISD Hourly Fair Bad data; missing data period 
 Big Bend Dam Hourly Good Downstream b.c.* 
Oahe discharge Oahe Dam Hourly Good Upstream b.c*. 
Air temp. Oahe Dam Daily Max/Min Good  
 Pierre Gage Hourly Fair Missing data 
Water temp. Oahe Dam Outflow Daily Poor Upstream b.c* 
 Pierre Gage Hourly Very Poor Bad data 
Ice cover obs.  Irregular Fair 12/19/96 through 1/28/97 
Description: Max stages: Jan 10–12. Evidence of smoothing of the ice cover roughness. 

b. 18 January 1996 through 11 February 1996 
Elevation gages Oahe Tailwater Hourly Good  
 Pierre  Hourly Good  
 LFSD Hourly Good  
 FISD Hourly Good  
 Big Bend Dam Hourly Good Downstream b.c.* 
Oahe discharge Oahe Dam Hourly Good Upstream b.c.*  
Air temp. Oahe Dam Daily Max/Min Good  
 Pierre Gage Hourly Missing  
Water temp. Oahe Dam Outflow  Daily Poor Upstream b.c.* 
 Pierre Gage Hourly Poor  
Ice cover obs.  Irregular Poor Missing Data 
Description: No ice cover observations after 26 January 1996. 

c. 7 January 1994 through 3 March 1994 
Elevation gages Oahe Tailwater Hourly Poor Missing Data 
 Pierre  Hourly Fair  
 LFSD Hourly Poor Bad Data 
 FISD Hourly Poor Bad Data 
 Big Bend Dam Hourly Good Downstream b.c.* 
Oahe discharge Oahe Dam Hourly Good Upstream b.c.* 
Air temp. Oahe Dam Daily Max/Min Good  
 Pierre Gage Hourly Good  
Water temp. Oahe Dam Outflow  Daily Poor Upstream b.c.* 
 Pierre Gage Hourly Missing  
Ice cover obs.  Irregular Fair  

*Boundary condition for simulation model  
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2. Pan thickness. This parameter, the initial thickness of ice floes formed by 
frazil ice in the Missouri River, must be used because there is no theory at this 
time that can be used to calculate the pan thickness. The value used here was 0.2 
ft.  

3. Minimum ice thickness. The minimum ice thickness at which the stationary 
ice cover forms is set at 1.5 ft.  

4. Frazil ice river velocity. The mean rise velocity of the frazil ice crystals 
transported in suspension is set at 0.008 ft s–1. The rise velocity is a function of 
the size and shape of the frazil ice crystals (Daly 1984). 

5. Ice removal factor. It is assumed that the ice cover is melted out once the 
ice cover thickness is reduced to a preset fraction of the maximum ice thickness 
calculated at a section. Numerical experiments indicated that this fraction should 
be set at 0.98. That is, the ice cover thickness need only be reduced by 2.0% for 
meltout to occur. 

The results of the simulation of the ice cover are compared with the available 
observations in Figure 6. The model’s ability to simulate the extent of the ice 
cover must be described as encouraging although mediocre at best.  

 

a. January and February 1994. 

Figure 6. Observed and simulated ice cover extents. 
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b. January and February 1996. 

 

c. December 1996 and January 1997. 

Figure 6 (cont.). Observed and simulated ice cover extents. 
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Sources of simulation inaccuracy 

The inaccuracies in simulating ice cover progressions can be attributed to 
several factors, most notably the following: 

1. The highly varied outflow from Oahe Dam. The outflow of Oahe Dam is 
highly unsteady, as shown in Figure 3. There is no precedent for simulating ice 
cover progression in highly unsteady flow. The ice cover progression described 
earlier implicitly assumes that the flow is steady. The result is that the simulated 
ice cover advances in a succession of quasi-steady flows. It is difficult to estimate 
the inaccuracy that this assumption introduces. 

2. The domination of ice cover formation by the juxtaposition. At the present 
time there is little basic understanding of the formation and growth of transported 
pans of ice. The formation of an ice cover by juxtaposition of these pans requires 
the use of empirical parameters that may vary with time and location. 

3. The use of a one-dimensional ice model. The growth of shore ice may play 
an important role in the overall formation of the ice cover in the Missouri River. 
Photographs often show extensive shore ice that forms, leaving a central open-
water expanse that may cover only one half to one third of the channel width. In 
the simulation the presence of shore ice is not taken into account. Observers gen-
erally place the leading edge of the ice cover at the farthest downstream extent of 
the open-water channel. 

4. The lack of complete outflow water temperature measurements. The 
simulation water temperature upstream boundary condition was based on one 
measurement of the outflow temperature per day. These measurements were 
linearly interpolated to produce an hourly boundary condition. The water tem-
perature variation throughout a 24-hour period is therefore not taken into account. 

5. The approximation of the water-to-air heat transfer using the temperature 
difference only. The heat transfer from the water surface has several components, 
including long-wave radiation, short-wave radiation, and sensible and latent heat 
transfer. In addition, the sensible and latent heat transfer rates are influenced by 
the stability of the atmosphere and the wind velocity. The use of the difference 
between the air and water temperature is a simplification that is prompted by the 
difficulty in obtaining observations and forecasting these components. However, 
this simplification may result in error, especially during periods of high winds. 

4.3 Estimation of filter parameters 

The main tasks described in this section are estimation of the Kalman filter 
parameters and development of means to cope with bad or missing observations. 
Theoretically it is quite straightforward to handle missing data. If an observation 
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is not available, the updating step of the cycle described above is skipped. Esti-
mation accuracy will suffer from skipping the updating step, but the procedure 
can be repeated until the next observation is available. A problem arises when 
some observations are missing and some are available. There are only a few 
observations of the ice cover extent, for example, and the number of ice cover 
observations is only a small percentage of the number of hourly stage observa-
tions available. This situation presents technical problems in updating, as the 
vector of observations, z, and the observation matrix, H, would need to continu-
ally vary with time to adjust to the number of observations that were available. In 
the approach used here the other source of information on the ice cover extent, 
the ice cover propagation model, is used to update the model when direct obser-
vations of the ice cover extent are missing. In this way the state–space model can 
be updated on the hourly schedule of the stage measurements and not the irregu-
lar schedule of the ice cover observations.  

The elements of the system noise covariance, Q, and the measurement error 
covariance, R, were assumed to be a known quantity in the filter equations of 
Chapter 3. However, in actuality, an a priori value of Q is difficult to describe 
since it is a function of model errors and natural system variability. The compo-
nents of R are, in theory, determined by the measurement instruments and tech-
nique and can be independently estimated. In practice, Q is often adjusted manu-
ally until an acceptable level of model performance is achieved. There are also 
means of estimating Q through adaptive filtering (Myers and Tapley 1976, Jaz-
winski 1969, Sage and Husa 1969) in which the components of Q (and R, if 
required) are sequentially estimated, as observations become available, to ensure 
non-correlation of the innovation sequence.  

In the present study the components of Q were estimated through numerical 
experiments. In these experiments the model was required to reproduce the 
recorded observations of ice cover extent and the stage from selected open-water 
and wintertime historical periods for the Missouri River downstream from Oahe 
Dam at Pierre, South Dakota. The experiments were designed to estimate the 
filter parameters that satisfy the following requirements:  

1. The model should reproduce the valid observations as closely as possible. 
A good least-squares criterion for this is the coefficient of determination of the 
model (Assaf and Quick 1991) described in requirement 4 below.  

2. The magnitudes of the elements of the covariance matrix, P, should be 
reasonable, based on the physics of river hydraulics and knowledge of the possi-
ble range of ice extents found in the Missouri River. Satisfying this requirement 
allows the variance of the model estimates to be reported along with the model 
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results, so that potential users can judge the reliability of the model results for 
their particular application.  

3. Values recursively estimated for the channel roughness should also be rea-
sonable. This requirement means that negative or unreasonably large values of 
this parameter are to be largely avoided.  

4. The innovation sequence should not be autocorrelated; it should be, in fact, 
white noise. This last requirement is part of the fundamental conditions under 
which the Kalman filter was derived. The sample autocorrelation function can be 
used to assess the degree of correlation of the innovation sequence.  

The coefficient of determination, Dj, is the proportion of the initial variance 
of the measurement of observation j accounted for by the model: 
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where jz  = mean of the observations of variable j 
 t

jx  = model estimate at time t corresponding to the observation at time t, 
t
jz   

 N = total number of time steps for which observations and model esti-
mates were available. 

The values of t
jx  are the model estimates prior to updating. The value of D is as 

follows: one, if the model exactly matches the observations; zero, if the model is 
no better than the mean of the observations at estimating the observed value; and 
negative, if the model results are worse than using the mean. There is one 
coefficient of determination for each gage site location. The coefficients can also 
be combined to arrive at an overall coefficient of determination based on all the 
observations. 
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4.3.1 System error covariance for stage and discharge 

The initial step entailed estimating the system error covariance, often referred 
to as the system noise, based on the open-water period of June 1998. This step 
was accomplished through a series of numerical experiments that successively 
adjusted the system error covariance, as described below. The overall coefficient 
of determination was used to judge the quality of each result. Similar experi-
ments were conducted for both the calibrated and uncalibrated channel geometry.  

Other than the system error covariance, the input data used by the model 
were similar in each case. The upstream boundary condition applied to the model 
was the hourly observed outflow of Oahe Dam. The downstream boundary con-
dition was the hourly observed stage at Big Bend Dam. In addition, the observed 
hourly air temperature at Oahe Dam and the observed outflow water temperature 
were used for input to the thermal model. However, as ice was not an issue dur-
ing this time, and there is no accurate observation of water temperature available 
downstream of Oahe Dam, the temperature results of the model are not consid-
ered here. The hourly observed data from the four water stage recorders—the 
Oahe Tailwater gage, the Pierre gage, the LaFramboise Island gage, and the Farm 
Island gage—were used to update the model.  

In the present study the usual assumption is made that the diagonal elements 
of Q are zero, because the components of the system error covariance applied to 
the state–space equation (eq 122) are uncorrelated. In practical terms a wide 
range of options are available to describe the system error covariance. At one 
extreme the same system error covariance could be applied to all the sub-
equations in the state–space equation. This approach cannot be justified in physi-
cal terms, because the state equation describes the propagation of stages, dis-
charges, ice extents, and conveyance adjustments, and it is hardly likely that the 
same system noise would apply to all. At the other extreme a separate system 
error covariance could be applied to each component of the state–space equation. 
In this study, separate system error covariances are applied to each equation, but 
the identical system noises are applied to each separate physical term. That is, all 
the system error covariance applied to the equations describing the propagation 
of stage is set to one value, all the system error covariance applied to the propa-
gation of discharge is set to another value, and so on. This approach reduces the 
computational burden. The matrix nΓ , defined in eq 117, becomes the identity 
matrix and thus does not need to be included in the computation.  

To determine reasonable values for the system error covariance, a series of 
numerical experiments were conducted in which the system error covariances 
were estimated for progressively more complete versions of the state–space 
model. First, the system error covariances were estimated for a model in which 
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the state vector is composed of only the discharges and the stages. This step 
allows assimilation of the observed stages. Next, the system error covariance of 
the conveyance factor was recursively estimated. This increases the size of the 
state vector to include the channel conveyance factors. The results of the first 
series of numerical experiments are shown in Figure 7. In these experiments the 
uncertainty of the measurement of the stages was set at 0.0025 ft2 (232.25 mm2). 
This estimate corresponds to a measurement error of ± 0.6 in. (0.0152 m), which 
is a reasonable value for measurement error of river gages. The results for both 
the calibrated and uncalibrated channel geometries are identical. In both cases the 
overall coefficient of determination was maximized at system error covariance 
for the stages of 0.01 ft2 and for the discharges of 0.0 ft2. Adjustment of the sys-
tem error covariance produced the greatest benefits for the uncalibrated model. 
Some improvement was also seen for the calibrated model, which suggests that  

0 0.0001 0.001 0.01 0.1 1
0

10

100

1000

10000

Stage System Variance

Discharge System Variance

.86

.85

.84

.83

.82

.81

.80

.80

.79

 

a. Uncalibrated model. 

Figure 7. Overall coefficient of determination of the state–space model as a function of 
assumed system noise for the stage and discharge. 
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b. Calibrated model. 

Figure 7 (cont.). Overall coefficient of determination of the state–space model as a 
function of assumed system noise for the stage and discharge. 

the model calibration could be further improved. The result that the system error 
covariance for discharge is zero does not mean that the estimated error covari-
ance of the model for discharge is also zero. (Mathematically, the fact that some 
of the components of Q are zero does not imply that any of the diagonal terms of 
P are also zero.) In fact, because of the strong correlation between the error 
covariance of the stages and the discharges, the error covariances of the dis-
charge are strongly influenced by the error covariance of the stages. This can be 
seen in Figure 8, in which the mean discharge and the square root of the model 
estimated error covariance at each model cross section are shown. The results 
shown are averages over the entire time period of June 1998. The square root of 
the model estimated error covariance at each cross section is shown as error bars 
around the mean discharge. These results were found by averaging the diagonal 
terms of the P matrix over the time period of the simulation. The results with 
respect to stage are shown in Figure 9. 
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Figure 8. Average model flow with the estimated model uncertainty based 
on the estimated error covariance. 
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Figure 9. Average model stage with the model uncertainty based on the 
estimated error covariance. 
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One method for assessing the reasonableness of the model error covariance is 
to compare the model error covariance of the stages and discharges with the natu-
ral variability of the stages and discharges. The average discharge and average 
stage for each cross section included in the model are shown in Figure 10 for 
June 1998. The bars around the average values indicate the standard deviation of 
the calculated discharges and stages. As can be seen, the variance of discharge 
increases in the downstream direction, the variance of stage in the upstream 
direction. The increase in the discharge variance in the downstream direction 
reflects the difficulty in simulating flows in a reach where the water surface slope 
is very flat combined with the very large cross-sectional area of the river in the 
downstream extent of the river reach. The comparison with the model estimated 
error covariance is shown in Figure 11. Here the standard deviation of the model 
estimated error covariance of the stages and discharges has been divided by the 
standard deviations of the stages and discharges and is expressed as a percentage. 
Over most of the channel length, the estimated error covariance of the stage is 
less than 20% of the natural variability. The model covariance increases down-
stream, reaching over 100% at the downstream end of the simulated reach. For 
the region of Pierre, which is upstream of river mile 1045, the error covariances 
of the stage and discharge are both less than 20% of the natural variability. As the  
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a. Average discharge and standard deviation of the discharge. 

Figure 10. Average discharge and water surface elevation at each model 
cross section during June 1998. 
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b. Average water surface elevation and standard deviation of the elevation. 

Figure 10 (cont.). 
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Figure 11. Comparison of the model uncertainty and the variance of the un-
updated model results. 
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estimated model error covariance was reasonably described in the reach of inter-
est, it was decided to not further adjust the system error covariance. However, in 
further studies, if this downstream reach was of interest, the system error covari-
ance could be further tuned to produce the required distribution of the model 
error covariance. 

4.3.2 System error covariance for conveyance factors 

The numerical experiments were extended to include estimation of the 
system noise of the conveyance factors. It is appropriate at this point to discuss 
the approach that was used in the application of the conveyance factors into the 
state–space model.  

The fundamental question that must be addressed is the number of convey-
ance factors. Theoretically the number of conveyance factors could range from 
the number of cross sections (if a separate conveyance factor was used for each 
cross section) to one (if a single conveyance factor is applied at all cross sec-
tions). The approach used here was to follow a procedure analogous to the stan-
dard procedure for calibrating hydraulic model roughness. In that procedure the 
selection of conveyance factors is controlled by the number of gages along the 
channel that measure the water surface elevation. A separate conveyance factor 
can be used for each river reach that has a gage at its upstream and downstream 
end. In the case of the Missouri River there are five gages for which hourly 
measurements are available for June 1998. The gages are, from upstream to down-
stream, the Oahe tailwater gage, the Pierre gage, the LaFramboise gage, the Farm 
Island Gage, and the Big Bend Dam gage. (The Big Bend Dam gage is the down-
stream boundary condition for the hydraulic model.) Thus, four conveyance fac-
tors can be used. The first would apply to the cross sections in the Oahe–Pierre 
reach; the second to the Pierre–LaFramboise reach; the third to the LaFramboise–
Farm Island reach; and the fourth to the Farm Island–Big Bend reach. 

In this series of tests the system error covariance for the stages was set at the 
values that led to the maximum overall coefficient of determination in the previ-
ous tests. The system error covariance of the conveyance factors was systemati-
cally varied and the overall coefficient of determination determined. The results 
are shown in Table 5. The maximum coefficient was found for a system variance 
of 0.0001. (This system error has no units because the conveyance factor is 
dimensionless.) The maximum was found at this value for both the calibrated and 
uncalibrated channel geometry. The coefficient dropped dramatically as the sys-
tem error was increased beyond the maximum value. In fact, if the system error 
covariance was increased to 0.01, it was found that the conveyance factor varied 
widely, which led to inconsistent and numerically unstable results. 



State–Space Model for River Ice Forecasting 81 

 

Table 5. Coefficient of determination for the June 1998 simulation  
using various system error covariances. 

Covariance = 0.000001 0.00001 0.0001 0.001 0.01 
Uncalibrated 0.914 0.918 0.923 0.911 – 
Calibrated 0.916 0.920 0.921 0.904 – 

 

Table 6. Coefficient of determination for the June 1998 simulation with 
updating. 

 Oahe Pierre LaFramboise 
Farm 
Island Overall 

No update 
Uncalibrated  0.823 0.758 0.583 –0.010 0.720 
Calibrated 0.935 0.944 0.768 0.682 0.894 

Stage and discharge update 
Uncalibrated 0.862 0.949 0.818 0.759 0.869 
Calibrated 0.919 0.958 0.825 0.821 0.906 

Stage, discharge, and conveyance update 
Uncalibrated 0.946 0.960 0.824 0.826 0.921 
Calibrated 0.948 0.965 0.819 0.837 0.923 

 

4.3.3 Summary 

The overall results with the optimum system error covariances for the open-
water period of June 1998 are listed in Table 6. Listed are the coefficients of 
determination for each of the four gages in the Missouri River downstream of 
Oahe Dam and the overall value. Shown first are the values for the simulation 
with no update. The results for the calibrated channel geometry are much better 
than for the uncalibrated results. The calibrated model shows substantial improve-
ments at each gage and overall. It is interesting to note that the uncalibrated 
model has the lowest coefficient of determination at the Farm Island gage, which 
is the most downstream gage and has the smallest water level variation of the 
four gages. Listed next are the updated model results. The results for the cali-
brated channel geometry are always slightly better than for the uncalibrated 
results, but the uncalibrated model results show the largest improvement over the 
no-update case. This finding suggests that updating may be an alternative to cali-
bration, saving the extensive time and effort calibration requires. The coefficient 
of determination is only slightly improved by the addition of the conveyance 
factors for the calibrated channel geometry case. As the channel roughness pre-
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sumably was accurately determined during the calibration process, this finding is 
probably to be expected.  

4.4 Hindcasting  

Simulation of the Missouri River when river ice is present is now addressed. 
The system error covariances have now been determined for the stages, dis-
charges, and conveyance factors. The remaining component of the state vector 
not yet investigated is the system error covariances to apply to the ice cover 
extents, dsΣ  and usΣ , for each cross section. From Chapter 2 it is evident that the 
values of these variables range from 0 for no ice to 0.05 for a complete ice cover 
at that section. It was determined that the value for the system error covariances 
for these variables could be set at 1.0.  

Three periods in the recent past were selected for hindcasting by the state–
space model. During these times ice was present in the Missouri River and 
observations are available: 19 December 1996 through 26 January 1997, 18 
January 1996 through 11 February 1996, and 7 January 1994 through 3 March 
1994. These periods were simulated without updating, with varying success as 
described in the previous section. As mentioned in the introduction to this chap-
ter, a primary problem that must be dealt with is the lack of observations of ice 
cover extent. Thirty-two ice observations are available in 1994, eight in 1996, 
and nineteen in 1996-97. This deficiency must be contrasted with approximately 
1296 hourly measurements of stages at each of the four gages in 1994, 600 
measurements of stage at each gage in 1996, and 940 measurements in 1996-97. 
The following procedure was developed to make maximal use of available data 
and to restrain the computational complexity of the state–space procedure: 

1. Recall from the description of the overall solution procedure described in 
Chapter 2 that the hydraulic model simulates the flow in the channel based on the 
ice cover extent that is present at the start of a time step. The implicit assumption 
is that the ice cover extent is constant throughout the time step. However, the ice 
cover progression model estimates the ice cover extent at the end of the time 
step. This information is then available to update the model with a better estimate 
of the ice cover extent at the end of the time step than the assumption that the ice 
cover extent is constant through this period. 

2. If an ice observation was available, the observation was used to update the 
model. However, if no observation was available, as was most often the case, the 
state–space model ice cover extent was updated with the estimate of the ice cover 
extent that was produced by the ice cover progression model. 
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Useable observations of water temperature downstream of Oahe Dam are not 
available for the periods under consideration. Observations of ice in transport are 
also not available for these periods (or any periods of time, for that matter). As a 
result the thermal and ice transport state–space model is not used in these data 
assimilation experiments. 

As mentioned above, the error covariance of the observation was set at 
0.0025 ft2, except during the 1993-94 winter period as explain below. However, 
whenever an observation was greater than 1430 ft (1929 NGVD) or less than 
1420 ft (1929 NGVD), the uncertainty associated with those measurements was 
set to an arbitrarily large value. As a result the state–space model would essen-
tially ignore those measurements when updating the model. 

4.4.1 Winter 1996-97  

The results of the data assimilation experiment for the period 19 December 
1996 through 26 January 1997 are shown in Figure 12. Figure 12a displays the 
estimated extent of the updated ice cover. The updated results match the obser-
vations closely.  

 

a. Updated and observed ice cover extent. 

Figure 12. Results of data assimilation experiment for 19 December 1996 
through 26 January 1997. 
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b. Updated and observed water surface elevations. X denotes missing data. 
Note the missing data for the Farm Island gage for the period 10–14 
January. 

Figure 12 (cont.). Results of data assimilation experiment for 19 December 
1996 through 26 January 1997. 

Figure 12b displays the observed and updated stages. The updated stages 
essentially duplicate the observed stages except during periods when observa-
tions are missing or bad, such as 10–14 January for the Farm Island gage. The 
error covariance of the measurements of the Farm Island gage was set to a large 
value for the period 10–14 January so that measurements from this gage were 
ignored for this period.  

There were other, subtler problems with the observations during this winter 
that dramatically affect the estimates of the conveyance factors shown in Figure 
12c. The water surface elevations measured at the Oahe tailwater gage, the Pierre 
gage, and the LaFramboise gage inexplicably nearly coincide during the period 
10–14 January. It is not clear what is causing this result. Undoubtedly the cold 
weather interfered with the proper operation of the gages. The only means the 
state–space model has for coping with these observations is to assume that the 
channel upstream of the LaFramboise gage has become much less rough so that 
the drop in stage between the gages is minimized. As a result the conveyance 
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c. Estimated conveyance factors. 

Figure 12 (cont.). 

coefficients increased dramatically during this period for the reach between the 
Oahe tailwater gage and the Pierre gage and the reach between the Pierre gage 
and the LaFramboise gage.  

The coefficients of determination for the updated model and the non-updated 
results are listed in Table 7. The updated results show substantial improvements 
over the non-updated simulation. 

4.4.2 Winter 1995-96  

The results of the data assimilation experiment for the period 18 January 
1996 through 11 February 1996 are shown in Figure 13. Figure 13a displays the 
updated ice cover extent result. It can be seen that updated results match the 
observations closely. However, only a few ice observations are available. Figure 
13b displays the observed and updated stages. The updated stages essentially 
duplicate the observed stages. There are almost no stage data missing during this 
time period. The large increase in stage that occurred on 18 January coincides 
with the ice cover progressing quickly upstream. 
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Figure 13c displays the conveyance factors for this period. The conveyance 
factor for the Farm Island–Big Bend reach drops dramatically when the ice cover 
progressed upstream. The possible cause for the drop is that the calibrated ice 
cover roughness underestimated the actual ice cover roughness during this 
period. The progressive increase in the conveyance factor for this reach may have  

 

Table 7. Coefficient of determination for wintertime simulation. 
 Oahe Pierre LaFramboise Farm Island Overall 

8 January 1994–3 March 1994 
No update  –1.076 –1.243 –0.0500 –0.842 –0.915 

Updated – 0.686 0.735 0.473 0.636 
18 January 1996–11 February 1996 

No update 0.737 0.390 0.177 0.053 0.396 

Updated 0.978 0.987 0.981 0.986 0.983 
19 December 1996–26 January 1997 

No update 0.347 0.168 –0.059 –0.097 0.145 
Updated 0.940 0.954 0.874 0.733 0.907 

 

 

a. Updated and observed ice cover extent. 

Figure 13. Results of data assimilation experiment for 18 January 1996 
through 11 February 1996. 
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b. Updated and observed water surface elevations. X denotes missing data. 

 

c. Estimated conveyance factors. 

Figure 13 (cont.). 
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resulted from the progressive smoothing of the ice cover with time. This phe-
nomenon has been reported for other ice-covered rivers (e.g., Ashton 1986). The 
increase in the conveyance factors at the end of the simulation period probably 
occurs because the state–space model did not cause the ice cover to retreat fast 
enough. Unfortunately there are no observations of the ice cover extent to update 
the model with during this time. 

The coefficient of determination for the updated model and the non-updated 
results are listed in Table 7. For this winter also the updated results show a sub-
stantial improvement over the non-updated simulation. 

4.4.3 Winter 1993-94  

The results of the data assimilation experiment for the period 7 January 1994 
through 3 March 1994 are shown in Figure 14. This is the winter of the three pre-
sented for which data are worst. The Oahe tailwater gage was missing about 90% 
of the observations and was removed from the updating procedure. As a result 
the number of conveyance factors was reduced to three. It was found that if the  

 

a. Updated and observed ice cover extent. 

Figure 14. Results of data assimilation experiment for 7 January 1994 
through 3 March 1994. 
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b. Updated and observed water surface elevations. X denotes missing data. 

 

c. Estimated conveyance factors. 

Figure 14 (cont.). 
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error covariance of the observations was kept at its standard value of 0.0025 ft2, 
then the updating caused the state–space model to become unstable. As a result 
the error covariance was increased by an order of magnitude to 0.025 ft2. Figure 
14a displays the updated ice cover extent result. It is evident that updated results 
match the observed values closely. The stages are shown in Figure 14c. Also, it 
can be seen that the gages show many spikes during this period. Similarly to the 
winter of 1996-97, the elevations reported for the Pierre gage and the Oahe gage 
nearly coincide from 21 January and subsequently. As a result the conveyance 
factor for this reach increases continuously over that period. 

The coefficient of determination for the updated model and the non-updated 
results are listed in Table 7. The updated results show an improvement over the 
non-updated simulation. However, given the quality of the observations, the fact 
that the coefficient of determination is not as great as in the other two simulations 
should not come as a surprise. 

4.4.4. Summary  

This section reports the results of the data assimilation experiments. The 
results show that the state–space model results depend on the quality of the 
observations used in updating. If all the observations are missing, the state–space 
model results are no worse than the simulation without updating. If the observa-
tions are not missing but are inaccurate, and the inaccuracy is not recognized, the 
state–space model results can be poor or illogical. The simulations used here 
apply simple maximum and minimum bounds on observations as one means to 
estimate their accuracy.  

The results also show that more subtle problems occurred with the observa-
tions of stage. For instance, the problem became evident when the stages at two 
gages nearly coincided. The model attempted to cope with such a problem by 
adjusting the means available to it, i.e., the conveyance factor. Understanding the 
time-varying accuracy of the observations is important to the application of a 
state–space model. 

4.5 Forecasting 

As described in Sections 3.2 and 3.3, the state–space model is operated in a 
cycle of propagation and updating, repeated throughout the winter, to produce an 
optimal estimate of the state variables, especially the location of the leading edge 
of the river ice cover. Forecasts are made at periodic intervals by propagating the 
state–space river ice model into the future. After a forecast the cycle of propaga-
tion and updating is repeated, and a cycle of model propagation, updating, and 
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forecasting can be repeated throughout the winter season. This section considers 
the requirements of the river ice state–space model to make unbiased, minimum 
variance forecasts for the Missouri River downstream of Oahe Dam.  

The river ice state–space model inevitably requires predictions of the future 
values of its boundary conditions to make predictions of the future channel ice 
cover extent and stages. These boundary conditions are Oahe Dam outflow, Big 
Bend stage, outflow water temperature, and air temperature. Predictions of future 
values of these boundary conditions are necessarily outside of the purview of the 
river ice state–space model itself and are not the focus of this chapter. Rather, the 
river ice state–space model is operated in the cycle of propagation, updating, and 
forecasting for the recorded historical winter periods when ice was present in the 
Missouri River, and the accuracy of the forecasts that are made is assessed. In 
this case the boundary conditions used to drive the forecasts are the recorded val-
ues of Oahe Dam outflow, Big Bend stage, outflow water temperature, and air 
temperature. Knowledge of the values of these boundary conditions is certainly 
an advantage, but it is one that allows the focus of the chapter to be on the use of 
the state–space model for making forecasts. Further work, beyond the scope of 
this study, is required to determine the best method for estimating future values 
of the model boundary conditions and their uncertainty.  

4.5.1 Procedure 

The following procedure was followed in developing forecasts of the river 
ice and stage conditions in the Missouri River downstream of Oahe Dam: 

1. The state–space model was advanced in time, using hourly time steps 
throughout the winter period. Each hour, the state–space model was updated with 
the observed stages and the observed ice extent, if that information was available. 
If an ice cover observation was not available, the state–space model was updated 
with the estimate developed by the ice cover progression model, as described in 
the previous section. The values of the Kalman filter parameters determined in 
the previous section were used. 

2. At 1200 hours each day (noon), a data file was created that contained the 
conveyance factors and the stage, discharge, ice cover extent, water temperature, 
frazil ice concentration, pan thickness, surface ice concentration, deposited ice 
thickness, and ice cover thickness at each cross section in the river reach. The 
data in this file formed the initial conditions for the forecast that would be made. 
1200 hours was chosen as the time of day to make the forecast because most 
observations of ice cover extent were reported prior to this time. This enabled the 
observation of ice cover extent (if one was available) to be assimilated into the 
state–space model prior to the forecast. 
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3. A forecast was made of the river ice conditions and the stages over the 
next four days (96 hours). The recorded values of the model boundary conditions 
were used to drive the forecast model.  

4. The forecast was not updated with observations. It is obvious that during 
operational use, observations of future stages and ice cover extents would not be 
available. 

5. This procedure was repeated for each day of the winter period. The result 
was a series of forecasts, initiated at noon and extending over the next four days. 
The winters of 1996-97 and 1995-96 were used for forecasting. The winter of 
1993-94 was not used because of the poor quality of the data. 

The accuracy of the forecasted stages could be quantitatively determined by 
comparing the forecasted stages with the recorded stages. The mean error of the 
forecast and the variance of the forecast error were calculated for each hour of 
the four-day forecast period. Quantitatively estimating the accuracy of the fore-
casts of the ice cover extents was difficult because of the few observations avail-
able. The lack of ice cover observations required that forecast accuracy be based 
on stage only. 

In addition to the procedure described above, the simulation model without 
updating was also operated each of the winter periods and used to produce initial 
conditions files each day at noon. These files documenting initial conditions were 
also used to produce forecasts to compare with the state–space model results. The 
files did not include conveyance factors, which can only be estimated through 
updating. 

4.5.2 Results 

A photo of the ice cover formation is shown in Figure 15. Examples of the 
forecasts of stage for the winter of 1996–97 are shown in Figure 16. Each solid 
black line represents the forecasted stage; the blue line marked with circles repre-
sents the observed stage at that location. In general, the forecasted and observed 
stages follow closely, except during periods of rapid ice cover advance, such as 
10–12 January, or retreat, such as 14–15 January. The forecasted ice cover 
extents are shown in Figure 17.  

The accuracy of the forecasts was determined by comparing the forecasted 
model stages with the observed stages. The results by day of forecast are listed in 
Table 8 and shown graphically by hour of forecast in Figure 18. Based on these 
results, the following insights emerge: 



State–Space Model for River Ice Forecasting 93 

 

 

Figure 15. Ice floes moving downstream past LaFramboise Island to the 
leading edge of the ice cover, which is the top right corner of the view. 

 

a. Oahe Tailwater gage. 

Figure 16. Examples of four-day forecasts of stage for the winter of 1996-97. 
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b. Pierre gage. 

 
c. LaFramboise gage. 

Figure 16 (cont.). Examples of four-day forecasts of stage for the 
winter of 1996-97. 
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d. Farm Island gage. 

Figure 16 (cont.). 

 

Figure 17. Four-day forecasts of the ice cover extent. 
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Table 8. Mean error in feet by day of forecast. 
System error covariance for 

conveyance factor 
Gage 

Day of 
forecast No update 0.0001 0.00001 0.000001 

a. 1996-97 
Day 1 0.636 0.099 0.109 0.196 
Day 2 0.657 0.100 0.111 0.213 
Day 3 0.675 0.103 0.112 0.212 
Day 4 0.668 0.142 0.124 0.196 

Oahe 

Four Days 0.659 0.111 0.114 0.204 
Day 1 0.195 0.094 0.074 0.134 
Day 2 0.231 0.102 0.083 0.159 
Day 3 0.249 0.111 0.092 0.170 
Day 4 0.246 0.167 0.123 0.178 

Pierre 

Four Days 0.230 0.119 0.093 0.160 
Day 1 0.236 0.096 0.066 0.096 
Day 2 0.268 0.090 0.065 0.115 
Day 3 0.279 0.094 0.068 0.117 
Day 4 0.261 0.151 0.094 0.120 

LaFramboise 

Four Days 0.261 0.108 0.073 0.112 
Day 1 0.446 0.099 0.062 0.135 
Day 2 0.492 0.192 0.142 0.233 
Day 3 0.509 0.314 0.233 0.291 
Day 4 0.504 0.459 0.314 0.338 

Farm Island 

Four Days 0.488 0.266 0.189 0.249 

b. 1995-96 
Day 1 0.066 0.112 0.112 0.228 
Day 2 0.060 0.175 0.173 0.317 
Day 3 0.057 0.215 0.213 0.345 
Day 4 0.036 0.269 0.266 0.385 

Oahe 

Four Days 0.055 0.193 0.192 0.319 
Day 1 –0.450 0.085 0.067 0.163 
Day 2 –0.457 0.135 0.117 0.241 
Day 3 –0.469 0.164 0.148 0.255 
Day 4 –0.502 0.217 0.197 0.284 

Pierre 

Four Days –0.470 0.151 0.133 0.237 
Day 1 0.474 0.102 0.081 0.181 
Day 2 –0.486 0.146 0.124 0.256 
Day 3 –0.498 0.173 0.151 0.267 
Day 4 –0.527 0.223 0.202 0.299 

LaFramboise 

Four Days –0.497 0.162 0.140 0.252 
Day 1 –0.348 0.066 0.034 0.182 
Day 2 –0.365 0.048 0.009 0.258 
Day 3 –0.379 0.018 –0.017 0.267 
Day 4 –0.410 –0.005 –0.035 0.301 

Farm Island 

Four Days –0.375 0.032 –0.002 0.252 
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a. Winter 1996-97. 
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b. Winter 1995-96. 

Figure 18. Error statistics (in ft) for the forecasts. Shown is the error for 
each hour from the time of the forecast. 
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1. The mean error produced by the river ice state–space model with updating 
is substantially less than the simulation model with updating. The mean error is 
reduced for all days of the forecast.  

2. The mean error of the simulation model without updating is essentially 
constant with time, as can be easily seen in Figure 18. The mean error of the 
forecast made using the state–space model shows a small increase with time. In 
general, the farther into the future the forecast, the larger the mean error. 

3. Through numerical experiment it was determined that the forecasts could 
be improved if the system error covariance of the conveyance factors was 
reduced over the value determined in the previous section. This can be seen in 
Table 8, where the mean errors are listed for the winters of 1996-97 and 1995-96. 
Reducing the system error covariance of the conveyance factors was found to 
improve the forecast results slightly. Reducing the system error covariance 
applied to the conveyance factors has the effect of reducing the variation in the 
factors.  

4. The overall results for the winter of 1996-97 are presented graphically in 
Figure 18a. The mean error and the standard deviation of the error are shown 
both for the state–space model and the simulation model without updating. The 
mean error of the state–space model is always less than that of the simulation 
model without updating. The daily cycling of the release outflow of Oahe Dam, 
which is quite regular, apparently causes the cyclic nature of the errors. The vari-
ance of the forecast errors increases with time. The variance of the forecast error 
is equal to the variance of the non-updated simulation forecasts after about 30 
hours. Throughout much of the winter of 1996-97 there was a problem with the 
inaccurate gage reading, which led to the high estimate of the conveyance factors 
in the upstream portions of the Missouri River (as discussed in section 4.3.2). 
The inaccurate data most likely also contributed to the lack of accuracy during 
the winter of 1996-97. 

5. The overall results for the winter of 1995-96 are presented graphically in 
Figure 18b. It can be seen that the mean error of the state–space model is always 
less than that of the simulation model without updating. It also is evident that the 
variance of the forecast error increases with time. In this case the variance of the 
forecast error is equal to the variance of the non-updated simulation forecasts 
after about 50 hours. The better results for the winter of 1995-96 partially reflect 
the fact that there were few data missing for this winter period than for 1996-97. 
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4.6 Summary 

In this chapter the state–space river ice model derived in the previous two 
chapters was applied to the Missouri River. The benefits and some of the prob-
lems in using a state–space model to simulate river ice conditions were demon-
strated. The benefits derive from the ability to update the state–space model with 
observations of stage and river ice conditions. It was shown that hindcasts of 
river ice conditions with the state–space model dramatically improve hindcast 
accuracy compared to the deterministic river ice model.  

Bad and missing data present a challenge for the state–space model. A 
scheme for coping with the small number of observations of ice conditions com-
pared to the many observations of stage was presented. Bad data can cause the 
state–space model to produce poor or illogical results if the inaccuracy is not rec-
ognized. Simple maximum and minimum bounds on observations were presented 
as one means to estimating the accuracy of observations. However, more subtle 
problems with the observations were also encountered, as described in this chap-
ter. Forecasts made with the state–space model also show a dramatic improve-
ment compared with the deterministic model, but the improvements lessen the 
farther the forecast is extended into the future, and the state–space model is about 
as accurate as the deterministic model for forecasts beyond roughly 48 hours. 
Reducing the system error covariance for the conveyance factor, compared to the 
optimal value found for open water, was determined to improve the forecast 
accuracy slightly. This result from the model reflects the rapid rate of change of 
the ice extent and hydraulic roughness in the Missouri River.  
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

This study evaluates the utility of a state–space model for forecasting the 
progression of a river ice cover. The model incorporates a hydraulic component, 
a thermal and ice transport component, and an ice cover progression component. 
In particular the study focuses on the use of the Kalman filter technique as a 
means of enhancing forecast accuracy. The technique updates the model by 
applying the Kalman filter procedure using observed stages and the observed 
position of the upstream leading edge of the ice cover to arrive at an efficient and 
optimal estimate of the river ice and hydraulic conditions. The model can also 
account for changes in the effective hydraulic roughness produced by smoothing 
of the underside of the river ice cover and other effects. It does so by recursively 
estimating a conveyance factor using the augmented Kalman filter procedure.  

The state–space model was applied to the Missouri River downstream of the 
Oahe Dam, a peaking hydropower plant located in Pierre, South Dakota. The out-
flow of the dam can vary between 0 and 55,000 cfs in a matter of minutes to meet 
the demands of the power grid. This large variation in flow makes the Missouri 
River downstream of Oahe Dam a significant location to examine the utility of 
using the Kalman filter technique. 

The system error covariance of the model was adjusted to produce the opti-
mal results in simulating the river stages downstream of Oahe Dam based on 
least-squares criteria. Forecasts of the downstream stages and river ice conditions 
are presented. The state–space model forecast accuracy is assessed as applied to a 
series of past winters in which ice conditions were severe. The updated model 
results show substantial improvements in the forecasts compared to those of non-
updated models. 

5.2 Conclusions and recommendations  

The following conclusions and recommendations are drawn from the study: 

1. A state–space model reduces the mean error of forecasts of river stage 
compared to estimates made using a simulation model without updating. 

2. It is possible to reduce the variance of error of forecasts of river stage for 
time periods that range from 30 to 50 hours through the use of a state–space 
model compared to the use of a simulation model without updating. Beyond this 
range the variance of the forecast errors of the state–space model is equal to or 
slightly larger that the model without updating. 
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3. In the case of the conveyance factor the Kalman filter parameter that pro-
duced the best result for data assimilation as measured by the coefficient of 
determination did not produce the best result as measured by the forecast accu-
racy. The forecast results were improved by reducing the variation of the 
conveyance factor with time. 

4. The benefits of the river ice state–space model depend on the accuracy and 
availability of observations. If no observations are available, the state–space 
model will do no better than a simulation model with no updating. If observations 
are available but are inaccurate, the integrity of the state–space model depends on 
recognition of the accuracy of the observations that are used. This is an important 
issue in the present study, because the intense cold conditions of winter can have 
a sudden, deleterious effect on the accuracy of river gages. If the inaccuracy of 
the gage is recognized, the state–space model can be instructed to reduce its 
influence and to proceed forward in time.  

5. The number of observations of the river ice conditions is far less than the 
number of observations of stage. Increasing the number of observations of river 
ice extent would improve the state–space model results. 

6. Improvements in the simulation of the river ice progression and retreat 
would benefit the present results. There are three areas in which the simulation of 
the ice cover progression and retreat could be improved: 

a) Develop a more physically based representation of the heat transfer from 
the water surface to the atmosphere. In the present study the heat transfer was 
assumed to be a constant linear function of the difference between the air and 
water temperature. The simulation could be improved through including the 
effects of wind speed, evaporation, and long-wave and short-wave radiation. 

b) Develop a more physically based representation of the formation of river 
ice floes. Unfortunately there is little theory to guide this development. The ice 
cover in the Missouri River downstream of Pierre is largely formed from such 
floes. 

c) Expand the data collection program at Oahe Dam to include hourly meas-
urements of the release water temperature and develop accurate measurements of 
the water temperature at the gage locations downstream of Oahe Dam. 

7. Application of the state–space model requires procedures to forecast the 
boundary conditions of the state–space model. For the river reach examined in 
this study, such boundary conditions are the Oahe Dam outflow, the downstream 
stage at Big Bend Dam, the release water temperature, and the air temperature. 
Each of these boundary conditions requires a separate procedure. Development 
of such procedures comprises an important area for future work.  



102 ERDC/CRREL TR-03-9 

 

LITERATURE CITED 

Andreasson, P., L. Hammer, and H.T. Shen (1998) The influence of surface 
turbulence on the formation of ice pans. In Ice in Surface Waters (H.T. Shen, 
ed.), Proceedings of the International Association of Hydraulic Research 14th 
Ice Symposium, Potsdam, New York, July 27–31, 1998, Vol. I, p. 69–76. 

Ashton, G. (1986) River and Lake Ice Engineering. Littleton, Colorado: Water 
Resources Publications. 

Assaf, H., and M.C. Quick (1991) Updating hydrologic forecast models. Cana-
dian Journal of Civil Engineering, 18: 673–674. 

Beltaos, S. (ed.) (1995) River Ice Jams. Littleton, Colorado: Water Resources 
Publications. 

Bravo, H.R., W.F. Krajewski, and F.M. Holly (1993) State space model for 
river temperature prediction. Water Resources Research, 29(5): 1457–1466. 

Budgell, W.P. (1981) A stochastic-deterministic model for estimating tides in 
branched estuaries. Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, 
Canada. 

Chiu, C.L. (ed.) (1978) Applications of the kalman filter to hydrology, hydrau-
lics, and water resources. Proceedings of the American Geophysical Union 
Chapman Conference, May 22–24, 1978, Department of Civil Engineering, Uni-
versity of Pittsburgh, Pittsburgh, Pennsylvania. 

Chiu, C.L., and E.O. Isu (1978) Kalman filter in open channel flow estimation. 
American Society of Civil Engineers Journal of Hydraulic Engineering, 
104(HY8): 1137–1152. 

Corps of Engineers (1990) HEC-2 water surface profiles user's manual. U.S. 
Army Corps of Engineers Hydrologic Engineering Center, Davis, California. 

Corps of Engineers (1995) HEC-DSS user’s guide and utility manuals. U.S. 
Army Corps of Engineers Hydrologic Engineering Center, Davis, California. 

Corps of Engineers (1997) UNET one-dimensional unsteady flow through a full 
network of open channels, User’s manual. U.S. Army Corps of Engineers 
Hydrologic Engineering Center, Davis, California. 

Crissman, R.D., C-L Chiu, W. Yu, K. Mizumura, and I. Corbu (1993) 
Uncertainties in flow modeling and forecasting for the Niagara River. American 
Society of Civil Engineers Journal of Hydraulic Engineering, 119(11): 1231–
1250. 



State–Space Model for River Ice Forecasting 103 

 

Cunge, J., F.M. Holly, and A. Verway (1980) Practical aspects of computa-
tional river hydraulics. Institute of Hydraulic Research, University of Iowa, Iowa 
City, Iowa. 

Daly, S.F. (1984) Frazil ice dynamics. Monograph 84-1, U.S. Army Corps of 
Engineers Cold Regions Research and Engineering Laboratory, Hanover, New 
Hampshire.  

Daly, S.F. (ed.) (1994) International Association for Hydraulic Research Work-
ing Group on Thermal Regimes: Report on frazil ice. Special Report 94-23, U.S. 
Army Corps of Engineers Cold Regions Research and Engineering Laboratory, 
Hanover, New Hampshire. 

Daly, S.F. (1995) Fracture of river ice covers by river waves. American Society 
of Civil Engineers Journal of Cold Regions Engineering, 9(1): 41–52. 

Fischer, H.B., J.L. List, R.C.Y. Koh, J. Imberger, and N.S. Brooks (1979) 
Mixing in Inland and Coastal Waters. New York: Academic Press. 

Fread, D.L. (1974) Numerical properties of implicit four-point finite difference 
equations of unsteady flow. NOAA Technical Memorandum NWS HYDRO-18, 
National Weather Service, NOAA, U.S. Department of Commerce, Silver 
Spring, Maryland. 

Fread, D.L., and M. Jin (1993) Real-time dynamic flood routing with NWS 
FLDWAV model using Kalman filter updating. Proceedings, Engineering 
Hydrology: Proceedings of the Symposium, July 25–30, 1993, San Francisco, 
California (C.Y. Kuo, ed.), New York: American Society of Civil Engineers, p. 
946–951. 

Gelb, A. (ed.) (1992) Applied Optimal Estimation. Cambridge, Massachusetts: 
The MIT Press. 

Georgakakos, K.P., and W.F. Krajewski (1985) A simulation study of recur-
sive parameter estimation techniques for a stochastic-dynamic flood routing 
model. Proceedings of the IFAC Conference, Lisbon, Portugal, 2–4 October 
1985, p. 27–33. 

Grewal, M.S., and A.P. Andrews (1993) Kalman Filtering: Theory and Prac-
tice. Englewood Cliffs, New Jersey: Prentice Hall, Inc. 

Hammar, L., and H.T. Shen (1995) Frazil evolution in channels. Journal of 
Hydraulic Research, 33(3): 291–306. 

Holly, F.M. (1984) Dispersion in rivers and coastal waters—1. Physical princi-
ples and dispersion equations. In Developments in Hydraulic Engineering 3 (P. 
Novak, ed.). New York: Elsevier Applied Science Publishers, p. 1–38. 



104 ERDC/CRREL TR-03-9 

 

Hsieh, B. (1987) A tidal hydraulic model of the C&D Canal. Hydraulic Engi-
neering, Proceedings of the 1987 National Conference on Hydraulic Engineer-
ing, Williamsburg, Virginia, 3–7 August 1987, p. 183–188. 

Jazwinski, A.H. (1969) Adaptive filtering. Automatica, 5: 475–485. 

Kailath, T. (1980) Linear Systems. Englewood Cliffs, New Jersey: Prentice-Hall. 

Kalman, R.E. (1960) A new approach to linear filtering and prediction prob-
lems. Transactions, American Society of Mechanical Engineering, Journal of 
Basic Engineering, Series 82D, p. 35–45. 

Kalman, R.E., and R.S. Bucy (1961) New results in linear filtering and predic-
tion theory. Transactions, American Society of Mechanical Engineering, Journal 
of Basic Engineering, Series 83D, p. 95–108. 

Kitanidis, P.K., and R.L. Bras (1980) Real-time forecasting with a conceptual 
hydrologic model. 1. Analysis of uncertainty. Water Resources Research, 16(6): 
1025–1033. 

Lal, A.M.W., and H.T. Shen (1992) Numerical simulation of river ice dynam-
ics. Proceedings of the Third International Conference on Ice Technology, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 11–13 August, 
1992. 

Lal, A.M.W., and H.T. Shen (1993) A mathematical model for river ice proc-
esses. CRREL Report 93-4, U.S. Army Corps of Engineers Cold Regions 
Research and Engineering Laboratory, Hanover, New Hampshire. 

Lee, Y.H., and V.P. Singh (1999) Tank model using Kalman filter. American 
Society of Civil Engineers, Journal of Hydrologic Engineering, 4(4): 344–349. 

Matousek, V. (1984) Types of ice run and conditions for their formation. Pro-
ceedings of the 7th International Association of Hydraulic Research Symposium 
on Ice, Hamburg, Germany, vol. 1, p. 315–327. 

Mizumura, K., and C.-L. Chiu (1985) Prediction of combined snowmelt and 
rainfall runoff. American Society of Civil Engineers, Journal of Hydraulic Engi-
neering, 111(2): 179–193. 

Myers, K.A., and B. Tapley (1976) Adaptive sequential estimation with 
unknown noise statistics. IEEE Transactions on Automatic Control, 520–523. 

Sage, A.P., and G. Husa (1976) Adaptive filtering with unknown prior statistics. 
Proceedings of the Joint Automatic Control Conference, p. 760–769. 



State–Space Model for River Ice Forecasting 105 

 

Sauvaget, P. (1984) Dispersion in rivers and coastal waters—2. Numerical com-
putation of dispersion. Developments in Hydraulic Engineering 3 (P. Novak, 
ed.), New York: Elsevier Applied Science Publishers, p. 39–78. 

Shen, H.T. (1996) River ice processes—State of research. Proceedings of the 
International Association of Hydraulic Research, 13th Ice Symposium, Beijing, 
China. 

Shen, H.T., and P.D. Yapa (1986) Flow resistance of river ice cover. Journal of 
Hydraulic Engineering, 112(2): 142–156. 

Shen, H.T., G. Bjedov, S.F. Daly, and A.M.W. Lal (1991) Numerical model 
for forecasting ice conditions on the Ohio River. CRREL Report 91-16, U.S. 
Army Corps of Engineers Cold Regions Research and Engineering Laboratory, 
Hanover, New Hampshire. 

Shen, H.T., D.S. Wang, and A.M.W. Lal (1995) Numerical simulation of river 
ice processes. American Society of Civil Engineers Journal of Cold Regions 
Engineering, 9(3): 107–118. 

Sorenson, H.W. (ed.) (1985) Kalman Filtering: Theory and Application. New 
York: IEEE Press. 

Wang, D.S., H.T. Shen, and R.D. Crissman (1995) Simulation and analysis of 
Upper Niagara River ice-jam conditions. American Society of Civil Engineers 
Journal of Cold Regions Engineering, 9(3): 119–134. 

 



 1. REPORT DATE (DD-MM-YY)                    2. REPORT TYPE 3. DATES COVERED (From - To)

 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

 6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
    NUMBER

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S)

11. SPONSOR / MONITOR’S REPORT
      NUMBER(S)

 12. DISTRIBUTION / AVAILABILITY STATEMENT

 13. SUPPLEMENTARY NOTES

 14. ABSTRACT

 15. SUBJECT TERMS

 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER      19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES

 a. REPORT                             b. ABSTRACT                c. THIS PAGE            19b. TELEPHONE NUMBER (include area code)

U     U        U U  114

REPORT DOCUMENTATION PAGE
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Form Approved
OMB No. 0704-0188

Approved for public release; distribution is unlimited.

Available from NTIS, Springfield, Virginia 22161.

May 2003 Technical Report

A State–Space Model for

River Ice Forecasting

Steven F. Daly

32980

U.S. Army Engineer Research and Development Center

Cold Regions Research and Engineering Laboratory

72 Lyme Road ERDC/CRREL TR-03-9

Hanover, NH 03755-1290

Office of the Chief of Engineers

Washington, DC 20314-1000

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Each winter, ice forms on rivers, streams, and navigable waterways, causing many problems through its effects on the operation of hydraulic control
structures, locks and dams, hydropower plants, and water intakes. Ice covers increase river stages by presenting an additional rough boundary, which
increases the channel wetted perimeter, reduces the channel hydraulic radius, and typically increases overall effective channel roughness. The increase in
stage can result in flooding, especially during severe ice conditions or in low-lying areas. This situation is particularly critical downstream of hydroelectric
power plants because the risk of ice-induced flooding may require operators of such plants to curtail power production and provide more expensive
replacement power. This study presents a state–space model for forecasting ice conditions and the resulting stages in rivers. The model incorporates a
hydraulic component, a thermal and ice transport component, and an ice-cover progression component. The Kalman filter procedure is used to update the
model with observed stages and observed positions of the upstream leading edge of the ice cover. The model thereby arrives at an efficient and optimal
estimate of the river ice and hydraulic conditions. The state–space model can also recursively estimate the effective channel roughness using the augmented
Kalman filter procedure to account for changes in the channel roughness produced by the river ice cover and other effects. By way of an example the state–
space model is applied to the Missouri River downstream of Oahe Dam, located in Pierre, South Dakota, USA. Outflow from the dam, which is used for
peaking power production, can vary between 0 and 55,000 cfs in a matter of minutes to meet the demands of the electric power grid it supplies. The system
noise covariance of the model was adjusted to produce the optimal results based on least-squares criteria. Forecasts of the downstream stages and river ice
conditions are presented. Accuracies of the forecasts obtained with the model are assessed using ice and flow observations from a series of past winters in
which ice conditions were severe. The updated model results show substantial improvements in the forecasts compared to a non-updated model.
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